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We report on the observation of confinement-induced resonances in strongly interacting quantum-gas

systems with tunable interactions for one- and two-dimensional geometry. Atom-atom scattering is

substantially modified when the s-wave scattering length approaches the length scale associated with

the tight transversal confinement, leading to characteristic loss and heating signatures. Upon introducing

an anisotropy for the transversal confinement we observe a splitting of the confinement-induced

resonance. With increasing anisotropy additional resonances appear. In the limit of a two-dimensional

system we find that one resonance persists.
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Low-dimensional systems have recently become experi-
mentally accessible in the context of ultracold quantum
gases. For a two-dimensional (2D) geometry, the
Berezinskii-Kosterlitz-Thouless (BKT) transition has
been observed [1], and in one dimension the strongly
correlated Tonks-Girardeau (TG) [2–6] and super-Tonks-
Girardeau (STG) gases [6] have been realized. In these
experiments steep optical potentials freeze out particle
motion along one or two directions and restrict the dynam-
ics to a plane or to a line. Such quasi-2D or quasi-1D
systems can be realized with ultracold gases when the
kinetic and the interaction energy of the particles are
insufficient to transfer the particles to transversally excited
energy levels. Whereas the confinement removes motional
degrees of freedom, it also provides an additional structure
of discrete energy levels that can be used to modify scat-
tering along the unconfined direction and by this to effec-
tively control the interaction properties of the low-
dimensional system [7–9]. In this Letter, we investigate
the few-body scattering processes that give rise to the
capability to tune interactions and hence to drastically alter
the properties of low-dimensional many-body quantum
systems [6].

In three-dimensional (3D) geometry magnetically in-
duced Feshbach resonances (FBRs) [10] allow tuning of
the interparticle interaction strength. A FBR occurs when
the scattering state of two atoms is allowed to couple to a
bound molecular state. Typically, the scattering state and
bound state are brought into degeneracy by means of the
magnetically tunable Zeeman interactions. For particles in
1D and 2D geometry a novel type of scattering resonance
occurs. Coupling between the incident channel of two
incoming particles and a transversally excited molecular
bound state generates a so-called confinement-induced
resonance (CIR) [7–9,11–13]. A CIR occurs when the 3D
scattering length a3D approaches the length scale that
characterizes the transversal confinement, i.e., the har-

monic oscillator length a? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@=ðm!?Þ
p

for a particle
with mass m and transversal trapping frequency !?. This
causes the 1D coupling parameter g1D ¼ 2@2a3D

ma2?
1

1�Ca3D=a?
to

diverge at a? ¼ Ca3D, where C ¼ 1:0326 is a constant
[7,9]. The CIR allows tuning of interactions from strongly
repulsive to strongly attractive and thus represents a crucial
ingredient for the control of interactions in a low-
dimensional system. Modification of scattering properties
due to confinement has been measured near a FBR for
fermions [14], and, recently, a CIR has been observed for a
strongly interacting 1D quantum gas of bosonic Cs atoms
and was used to drive the crossover from a TG gas with
strongly repulsive interactions to an STG gas with strongly
attractive interactions [6]. Here, for an ultracold quantum
gas of Cs atoms with tunable interactions, we study the
properties of CIRs by measuring particle loss and heating
rate and, in particular, confirm the resonance condition
a? ¼ Ca3D for symmetric 1D confinement. For the case
of transversally anisotropic confinement we find that the
CIR splits and, to our surprise, persists for positive a3D
even when the anisotropy reaches the limit of a 2D system.
Figure 1(a) reviews the basic mechanism that causes a

CIR for zero collisional energy in one dimension [9]. It is
assumed that in three dimensions the scattering potential
supports a single universal bound state for strong repulsive
interactions (dotted line) [10]. The point where the incom-
ing channel of two colliding atoms and the universal dimer
state are degenerate marks the position of a 3D FBR
(triangle). In one dimension, strong transversal confine-
ment shifts the zero energy of the incoming channel
(middle dashed line) and introduces a transversally excited
state (upper dashed line). As a result of the strong confine-
ment, the universal dimer state with binding energy EB

(lower solid line) exists also for attractive interactions [15]
whereas the original 3D FBR has disappeared. Instead,
there is a CIR (star) when the incoming scattering channel
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becomes degenerate with the transversally excited molecu-
lar bound state (upper solid line). It is assumed that the
binding energy of this state is also EB, shifted by 2@!? [7].
In more detail, as depicted in Fig. 1(b), we assume that the
energy levels of noninteracting atoms, as a result of cylin-
drically symmetric transversal confinement, can be ap-
proximated by those of a 2D harmonic oscillator with
En1;n2 ¼ @!?ðn1 þ n2 þ 1Þ and quantum numbers n1 and

n2 belonging to the two Cartesian directions. Scattering
atoms [16] in the transversal ground state (0,0) can couple
to the excited states (n1, n2) if the parity of the total wave
function is preserved [12]. The energetically lowest al-
lowed excited states are threefold degenerate with an en-
ergy E ¼ 3@!? and with quantum numbers (1,1), (2,0),
and (0,2). For the transversally symmetric confinement,
they contribute towards a single CIR [9]. However, the
contribution of the state (1,1) is negligible due to the zero
contact probability of the atoms and the short-range char-
acter of the interatomic interaction. Unequal transversal
trapping frequencies !1 and !2 ¼ !1 þ �! lift this de-
generacy and shift the energy levels according to En1;n2 ¼
@!1ðn1 þ n2 þ 1Þ þ @�!ðn2 þ 1=2Þ. One thus expects a
splitting of the CIR.

We start from a tunable Bose-Einstein condensate
(BEC) of 1.0 to 1:4� 105 Cs atoms in the energetically
lowest hyperfine sublevel [17] confined in a crossed-beam
optical dipole trap and levitated against gravity by a mag-
netic field gradient of jrBj � 31:1 G=cm. Tunability of
a3D is given by a FBR as shown in Fig. 1(d) with its pole at
B0 ¼ 47:78ð1Þ G and a width of 164 mG [17,18]. The BEC
is produced at a3D � 290a0. We load the atoms within
300 ms into an optical lattice, which is formed by two

retroreflected laser beams at a wavelength of � ¼
1064:49ð1Þ nm one propagating horizontally as illustrated
in Fig. 1(c). These lattice beams confine the atoms to an
array of approximately 3000 horizontally oriented, elon-
gated 1D tubes with a maximum occupation of 60 atoms at
a linear peak density of approximately n1D � 2=�m. Weak
longitudinal confinement results from the Gaussian-shaped
intensity distribution of the beams. We raise the lattice to a
depth of typically V ¼ 30ER, where ER ¼ h2=ð2m�2Þ is
the photon recoil energy. At this depth, the resulting trans-
versal and longitudinal trap frequencies are !? ¼ 2��
14:5 kHz and !k ¼ 2�� 16 Hz and we then have a? �
1370a0. After loading we slowly ramp down jrBj in 50 ms
and adiabatically increase a3D to 915 a0 in 100 ms to create
a TG gas with well-defined starting conditions near the
CIR [6]. To detect the CIR as a function of B, manifested
by a loss resonance, we quickly set B in less than 200 �s to
the desired value, wait for a hold time of typically � ¼
200 ms, and then measure the number N of remaining
atoms by absorption imaging. For this, we relevitate the
atoms, ramp down the lattice beams adiabatically with
respect to the lattice band structure, and allow for 50 ms
of levitated expansion and 2 ms time of flight. Note that � is
chosen to be much longer than the lifetime of the STG
phase [6].
We observe the CIR in the form of an atomic loss

signature as shown in Fig. 2. We attribute the loss near
the resonance to inelastic three-body collisions [19], which
lead to molecule formation and convert binding energy into
kinetic energy, causing trap loss and heating, similar to the
processes observed near a FBR [10]. In Fig. 2(a) the CIR
can be identified as a distinct ‘‘edge’’ for the atom number
N. Initially, in the TG regime losses are greatly suppressed,
but increase rapidly on the attractive side of the CIR. N
drops to a minimum when B is increased and then recovers
somewhat. A clear shift of the loss signature to lower
values for B and hence lower values for a3D can be dis-
cerned when the confinement is stiffened. When we iden-
tify the position of the edge with the position of the CIR,
we find good agreement with the analytical result Ca3D ¼
a? as shown in Fig. 2(b). As we have no theoretical
description of the detailed shape of the loss resonance,
we also plot, for comparison, the position of the minimum,
which is shifted accordingly.
In Fig. 2(c) we juxtapose the loss and the heating rate

that we measure in the vicinity of the CIR. For this, we
measure the increase of the release energy within the first
100 ms. After holding the atoms for time � at a given value
of B, we decrease a3D back to 250 a0 in 20 ms, switch off
the lattice potential and determine the release energy in the
direction of the tubes from the momentum distribution in
free space expansion. We observe an increase for the
heating rate when the CIR is crossed. From a low value
of 10 nK=s in the TG regime it rises to a maximum of
approximately 150 nK=s and then drops to settle at some
intermediate value. The position of the maximum agrees

FIG. 1 (color online). (a) Illustration of the mechanism respon-
sible for a CIR; see Ref. [9] and text for details. The energy
levels near a scattering resonance are plotted as a function of
1=a3D. The CIR occurs for Ca3D ¼ a? when scattering atoms
are allowed to couple to transversally excited bound states.
(b) indicates the shift and splitting for anisotropic confinement
characterized by �!. (c) Experimental configuration. Two laser
beams create an optical lattice that confines the atoms to an array
of approximately 3000 independent, horizontally oriented elon-
gated 1D tubes. (d) Tuning of a3D is achieved by means of a FBR
with a pole at B ¼ 47:78ð1Þ G [18].

PRL 104, 153203 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

16 APRIL 2010

153203-2



well with the maximum for atom loss. We check that the
system’s increase in energy is sufficiently small so that its
1D character is not lost. The release energy, even at maxi-
mal heating, remains below kB � 30 nK, which is far
below the energy spacing of the harmonic oscillator levels,
@!? � kB � 600 nK.

We now examine 1D systems with transversally aniso-
tropic confinement. Starting from a lattice depth of V ¼
25ER along both transversal directions, yielding !? ¼
!1 ¼ !2 ¼ 2�� 13:2ð2Þ kHz, we increase the horizontal
confinement to frequencies up to!2 ¼ 2�� 16:5ð2Þ kHz,
corresponding to a lattice depth of 39ER, while keeping the
depth of the vertical confinement constant. Figure 3(a)
shows a distinct splitting of the original CIR into two
loss resonances, CIR1 and CIR2. The splitting increases
as the anisotropy is raised. In Fig. 3(b) we plot the 3D scat-
tering length values a3D;1 and a3D;2 that we associate with
the positions of CIR1 and CIR2 as a function of the fre-
quency ratio !2=!1. For this, as it becomes difficult to
assign an edge to both of them, we simply determine the
associated atom number minima and subtract a constant
offset of 88ð7Þa0 as determined from the measurement
shown in Fig. 2(b). One of the resonances, CIR2, exhibits
a pronounced shift to smaller values for a3D as the hori-
zontal confinement is stiffened. The second resonance,
CIR1, shows a slight shift towards higher values for a3D.
We now use the lifting of the degeneracy for the energy
levels as indicated in Fig. 1(b) to model the observed
splitting of the CIR. We assume that the implicit equation

�ð1=2;�EB=ð2@!?Þ þ 1=2Þ ¼ �a?=a3D for the binding
energy EB [9] remains approximately valid for sufficiently
small �!, taking !? ¼ !1. Here, � is the Hurwitz zeta
function. We translate the scattering length values a3D;1
and a3D;2 into binding energies and calculate the energy

difference �EB ¼ EBða3D;1Þ � EBða3D;2Þ, shown in

Fig. 3(c). While this model does not explain the upward
deviation seen for CIR1, the difference �EB is in reason-
able agreement with the expected energy shift caused by
the shifts of the excited harmonic oscillator states ðE0;2 �
E2;0Þ ¼ 2@�! [solid line in Fig. 3(c)]. We thus attribute

CIR2 to the stiffened confinement along the horizontal
direction and hence to state (0,2), while CIR1 corresponds
to the unchanged confinement along the vertical direction
and hence to state (2,0).
We observe the appearance of additional structure in the

measured loss curves when we increase the transversal
anisotropy by weakening the confinement along one axis,
here along the vertical direction. Figure 4(a) shows the
atom number after � ¼ 300 ms for trapping frequency
ratios !1=!2 from 0.67 to 0.45. Multiple loss resonances
appear close to the position of CIR1. The number of
resonances increases and the positions shift continuously
as the confinement is weakened. We speculate that those
resonances are a result of a coupling to additional excited
states, resulting in a multichannel scattering situation. Also

FIG. 2 (color online). Particle loss and heating rates in the
vicinity of a CIR. (a) The number N of remaining atoms after
� ¼ 200 ms shows a distinct drop (edge) when B is scanned
across the CIR. A clear shift of the position of the edge to lower
values for B can be observed when the transversal confinement is
stiffened, !? ¼ 2�� ð0:84; 0:95; 1:05Þ � 14:2ð2Þ kHz (circles,
squares, triangles). (b) Position of the edge (circles) as deter-
mined from the intersection point of a second-order polynomial
fit to the minimum for N and the initial horizontal baseline as
shown in (a), converted into values for a3D. For comparison, the
position of the minimum (triangles) is also shown. The solid line
is given by Ca3D ¼ a?. (c) Heating rates near the CIR (circles).
For comparison, N is also shown (triangles). Here, !?¼2��
12:0ð2Þ kHz. All error bars reflect 1� statistical uncertainty.

FIG. 3 (color online). Splitting of a CIR for a 1D system with
transversally anisotropic confinement. (a) As the horizontal
confinement is stiffened, !2=!1 ¼ 1:00, 1.10, 1.18 (circles,
diamonds, triangles) for !1 ¼ 2�� 13:2ð2Þ kHz, the CIR splits
into CIR1 and CIR2. (b) Position of CIR1 (a3D;1, circles) and

CIR2 (a3D;2, squares) as a function of the frequency ratio!2=!1.

(c) Binding energy difference �EB as determined from the
implicit equation (see text) in comparison to the expectation
from the simple harmonic oscillator model (solid line).
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the weakening of the confinement could induce sufficient
anharmonicity to allow for violation of the parity rule [20].

Surprisingly, we find that one of the CIRs persists in the
limit of a 2D system. Previous theoretical studies on 2D
systems have predicted the appearance of a CIR for nega-
tive a3D, but not for positive a3D [13,21]. In the experiment,
we reduce the horizontal confinement while keeping the
vertical confinement constant to probe the transition from
the array of tubes to a stack of pancake-shaped, horizon-
tally oriented 2D systems. Trapping in the horizontal di-
rection is still assured, now by the Gaussian profile of the
vertically propagating laser beam, for which !2 ¼ 2��
11 Hz. Figure 4(b) shows that the CIR associated with the
tight confinement shifts to lower values for B and hence for
a3D as the horizontal confinement is weakened. In the limit
of 2D confinement, one of the CIRs, and in fact all the
additional structure observed above, have disappeared, but
one resonance persists. To check that the observed reso-
nance is indeed the result of the 2D confinement, we vary
the confinement along the tight vertical direction. Fig-
ure 4(c) plots the positions of edge and minimum of the
loss signature as a function of a?;2D, the confinement

length associated with this direction. When we again as-
sociate the edge with the pole of the resonance, we obtain
C2Da3D ¼ a?;2D with C2D ¼ 1:19ð3Þ, where C2D is a scal-

ing factor similar to C for the 1D case. Further scattering

experiments are needed to elucidate the energy dependence
of this 2D scattering resonance.
In summary, we have investigated the properties of

CIRs, which appear in low-dimensional quantum systems
as a result of tight confinement and which replace ‘‘con-
ventional’’ 3D Feshbach resonances to tune the effective
atomic interaction strength. We observed a splitting of the
CIR for anisotropic transversal confinement, the appear-
ance of multiple resonances for strongly anisotropic con-
finement, and the survival of one resonance for positive a3D
in the limit of 2D confinement. We expect that CIRs will
not only be used in 1D geometry to tune the effective
interaction strength as recently demonstrated [6], but also
in 2D geometry and mixed dimensions [22] for the study of
strongly interacting quantum systems.
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FIG. 4 (color online). (a) Appearance of additional structure in
the vicinity of CIRs for strongly anisotropic transversal confine-
ment. The trap frequencies are !2 ¼ 2�� 16:6ð2Þ kHz and
!1=!2 ¼ 0:67, 0.60, 0.53, 0.49, 0.45 from top to bottom.
(b) Transition from 1D to 2D confinement. As the horizontal
lattice is ramped down, CIR2 shifts and persists, while CIR1

disappears (!1 ¼ 2�� 13:0ð2Þ kHz and !2=!1 ¼ 0:58, 0.42,
0.00 for squares, circles, and triangles). (c) Scaling of the CIR’s
position in 2D, in analogy to the 1D case shown in Fig. 2(b). The
position of the CIR as determined from the edge (circles) and,
alternatively, from the minimum in atom number (triangles)
shifts to lower values for a3D as the confinement is stiffened
and a?;2D is reduced. The solid line is a linear fit according to

C2Da3D ¼ a?;2D with C2D ¼ 1:19ð3Þ.
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