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We experimentally investigate the mix-dimensional scattering occurring when the collisional partners

live in different dimensions. We employ a binary mixture of ultracold atoms and exploit a species-

selective 1D optical lattice to confine only one atomic species in 2D. By applying an external magnetic

field in proximity of a Feshbach resonance, we adjust the free-space scattering length to observe a series of

resonances in mixed dimensions. By monitoring 3-body inelastic losses, we measure the magnetic field

values corresponding to the mix-dimensional scattering resonances and find a good agreement with the

theoretical predictions based on simple energy considerations.
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Degenerate atomic gases have provided quantum sys-
tems with unprecedented possibilities of manipulation and
control, achieved by combining magnetic and optical po-
tentials as well as scattering resonances. The capability to
model and control tightly confining potentials sparked the
experimental investigation on quantum systems of reduced
dimensionality, since particles can be forced to occupy a
single quantum level along specific directions. Spectacular
achievements, such as the observation of the Berezinskii-
Kosterlitz-Thouless crossover [1] in 2D and the realization
of Tonks-Girardeau gases [2] in 1D, confirmed the impor-
tance of quantum gases as test bench for fundamental low-
energy physical phenomena. Moreover, low dimensional
ultracold atomic gases show further peculiar scattering
properties leading to the appearance of confinement-
induced resonances (CIR) depending on the dimensional-
ity of the system [3–6]. Interestingly, while much of the
work done so far deals with well-defined dimensionality,
systems composed of interacting parts living in different
dimensions have received little attention and, besides re-
cent theoretical analysis [7,8], experimental investigation
is still lacking. Such mix-dimensional systems are relevant
in several physical domains, ranging from cosmology to
condensed matter physics. In brane theory, for example,
particles and fields are confined to the ordinary 3D space
and interact with gravitons that can propagate in extra
dimensions [9].

In this Letter, we report on the first experimental real-
ization of a mix-dimensional system composed of two
ultracold atomic species, 41K and 87Rb, of which we con-
trol the mutual interactions. We exploit the technique of
species-selective dipole potential (SSDP) proposed in
Refs. [7,10] and implemented in Ref. [11], to realize a
tight potential confining one species in 2D (41K), while
having a negligible effect on the other (87Rb), that remains
3D. In this configuration, for the first time we observe a

series of up to 5 scattering resonances, induced by the
mixed dimensionality. These discrete resonances are pecu-
liar to configurations having only one collisional partner
tightly confined: they are indiscernible in 3D homogeneous
(or weakly confined) systems and absent for confined
particles with equal harmonic frequencies. Important
physical insight about mix-dimensional resonances
(MDRs) can be gained by the following simple picture.
In general, a scattering resonance may occur when the
energy of a closed-channel state equals the energy of
scattering partners. For tightly confined atoms, the energy
shifts of both the scattering threshold (unbound atoms) and

FIG. 1 (color online). (top) Sketch of the experimental con-
figuration: 3D(Rb)-2D(K) mix-dimensional system obtained us-
ing a SSDP lattice. (bottom) Energy diagram of the open and
closed channel as a function of the Feshbach field B: due to the
external potential, both channels are uplifted and split into many
levels, separated by the relevant harmonic oscillator quanta @!i

(i ¼ K;KRb). MDR may occur when closed-channel levels (n0,
sloping lines) intercept populated open-channel levels (horizon-
tal lines). The shift b due to the channel coupling is assumed
equal to that in free space for n0 ¼ 0, and is neglected for n0 > 0.
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the closed-channel levels (dimer) cannot be neglected. In a
collision between an atom A lying in the harmonic ground
level along the confined direction x and a free atom B with
negligible momentum, resonances might arise when
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where ! denotes the harmonic frequency of particle A and
Eb the free-space binding energy of the (bare) closed
channel. Channel coupling, neglected in Eq. (1), causes a
resonance position shift b, assumed to be relevant only for
n0 ¼ 0. The series of resonances is absent if the colliding
atoms have equal harmonic frequencies because, in this
case, the center-of-mass and the internal motion are de-
coupled and collisions cannot change the center-of-mass
energy. In the following, a collection of tight harmonic
traps along one direction is provided by a 1D SSDP optical
lattice (Fig. 1), such that the harmonic frequency ! of the
confined K sample depends on the lattice strength VK

lat,

hereafter expressed in units of K recoil energy [Vlat ¼
sð@kLÞ2=ð2mKÞ ¼ sh� 7:797 kHz].

The formal theory of scattering confirms the simple
picture above and allows us to derive the scattering ampli-
tude, as well as to define an effective scattering length aeff .
Here we summarize our analysis following Refs. [7,8], and
introducing an effective-range correction that provides an
improved approximation for the binding energy beyond the
universal region Eb / ð1=a2Þ, a being the free-space scat-
tering length.

We consider atoms A and B interacting through a short-
range potential VðrA � rBÞ. Because of translational sym-
metry, we can separate the center-of-mass motion in the yz
plane. The Schrödinger equation reads

½H0 þ V � E�c ðxA; xB;�ABÞ ¼ 0;

H0 ¼ � @
2@2xA
2mA

� @
2@2xB
2mB

� @
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2
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2x2A;

where �AB ¼ ðyA � yB; zA � zBÞ and � is the reduced

mass. At short distances r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxA � xBÞ2 þ �2
AB

q

! 0,

the presence of the confining potential is irrelevant
and we can replace the real potential V with the gen-
eralized Bethe-Peierls boundary condition imposed on
the wave function: c jr!0 / 1=r� 1=~aðEcÞ, where
~aðEcÞ�1 ¼ a�1 ��r0Ec=@

2 with Ec denoting the colli-
sion energy [12]. On the other hand, the behavior of the
zero energy wave function at large distances r ! 1 de-

fines an effective scattering length aeff: c jE!ð@!=2Þ;r!1 /
½1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mB
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The numerically computed aeff is plotted in Fig. 2(a) for
the mass values of our experiment (A ¼ 41K, B ¼ 87Rb),
the effective range r0 ¼ 168:37a0, and the confinement

length lho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@=mA!
p ¼ 1124a0. We see that aeff diverges

for one particular negative value of a and for an infinite
series of positive values of a. The width of successive
resonances decreases and, for lho=jaj � 1, aeff approaches

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi

mB=�
p

. We also see that the resonant a values coincide
with those calculated by using Eq. (1). The theoretical
predictions outlined in Fig. 2, combined with the knowl-
edge of the magnetic field dependence of the scattering
length in free space, allow for quantitative predictions of
the MDRs positions as well as the behavior of aeffðBÞ
[Fig. 2(b)].
In free space, two Feshbach resonances located at 3.84

and 7.87 mT are useful to tune the interspecies scat-
tering length [13]. The binding energies of the weakly
bound Feshbach 41K87Rb dimers have been measured
[14] and used to adjust the collisional model [15]. For
the weakly bound dimer state arising at 3.84 mT, the
numerically calculated scattering length as a function of
the magnetic field B, in mT, is well reproduced by the
parametrization aðBÞ ¼ 208a0ð1þ 3:09=ðBþ 3:852Þ �
4:992=ðB� 3:837Þ � 0:164=ðB� 7:867ÞÞ, while the cal-
culated dimer free-space binding energy is well fitted by
the effective-range expansion [12]: EbðBÞ ¼
ð@2=�r20Þð1� r0=aðBÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2r0=aðBÞ
p Þ, with r0 ¼

168:37a0 for B ranging from 0 to 3.84 mT.
In the experiment, we load a crossed dipole trap,

created by two orthogonal, linearly polarized, laser beams
(� ¼ 1064 nm, waists ’ 70 �m), with a 41K-87Rbmixture
in the jF ¼ 1; mF ¼ 1i hyperfine state, at 1:5 �K. By

FIG. 2 (color online). (a) Calculated aeff as a function of 1=a
for the masses of our mixture and s ¼ 20. The dashed line
corresponds to aeff ¼ a. Only even n0 resonances are allowed
(see text). (b) Calculated aeff as a function of the magnetic field,
for several lattice strengths s. The dotted lines show the reso-
nance positions calculated from Eq. (1) for n0 ¼ 2, 4 and s ¼ 20.
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lowering the beams intensity, we evaporatively cool the
atoms to 0:3 �K in the presence of a uniform field of
7.7 mT for which the interspecies scattering length is
convenient (�260a0) to ensure both fast thermalization
and a low rate of inelastic collisions. The final temperature
is sufficiently high to avoid Bose-Einstein condensation of
the samples, but also low enough to make sure that 41K
occupies only the ground state of the tight confining po-
tential (kBT � @!). At this point, we ramp the Feshbach
field to 1.4 mT in 20 ms and, immediately afterwards, we
raise a 1D SSDP lattice with an exponential ramp of 50 ms
(time constant of 10 ms). We then bring the Feshbach field
to the final value B in 15 ms and wait typically for 65 ms.
We verified that no discernible fraction of 41K atoms lies in
excited bands. During the hold time the atom number
decays through inelastic 3-body recombination collisions;
after the lattice is linearly extinguished in 3 ms and the
atoms expand freely for 6 ms, we record the number and
temperature of both atomic samples for different values of
the final Feshbach field. The presence of the scattering
resonance is detected as a pronounced peak in the atom
loss due to a resonant enhancement in the 3-body recom-
bination rate.

The SSDP lattice is a standing wave along the horizontal
x direction, with linear polarization oriented along the z
direction of the Feshbach field and waist equal to 85 �m.
The SSDP wavelength � ¼ 2�=kL ¼ 790:018ð2Þ nm is
chosen by minimizing the effect of Raman-Nath diffrac-
tion on Rb atoms. With respect to our previous work [11],
we improved the extinction ratio VRb

lat =V
K
lat to be lower than

10�2 by purifying the lattice polarization.
We observe a quite rich spectrum of inelastic losses with

several minima of the total atom number, such that a
comprehensive identification of the different peaks re-
quires broad magnetic field scans from approximately 1.5
to 5 mT with a resolution of 7:5 �T (Fig. 3). The first
notable feature is that, already for s ¼ 10 at the magnetic
field of the free-space Feshbach resonance (B0 ¼
3:84 mT) there is no minimum of atom number. Instead
we find a peak of losses at higher magnetic field, around
4.0 mT, where a < 0. Several additional minima are found
in a magnetic field region where a > 0. Position and width
of these peaks depend on the lattice strength: as we in-
crease s, the peaks get narrower and shift towards lower B
fields, with the exception of the minimum at B> B0 which
slightly shifts in the opposite direction. In Fig. 3, we also
show the predictions of MDR positions given by the above
reported analysis. While the model correctly describes the
trends, the agreement with the peak positions is qualitative.
In order to make more accurate predictions, we take into
account that the lattice actually creates many adjacent
wells that can be treated as pure individual 2D traps for
41K only on time scales much shorter than the hopping time
between neighboring sites, �h. Since in our case �h is
comparable to the experimental duration, 41K atoms can
indeed delocalize over the lattice. As a consequence, we

introduce the energy band structure and calculate the posi-
tions of the expected resonances by means of

p2=ð2mRbÞ þ �Kð0; q;VK
latÞ ¼ �KRbðn0; qþ p;VK

latÞ � Eb;

(2)

where �iðn; q;VK
latÞ denotes the energy of the Bloch wave of

particle ið¼ K;KRbÞ, with quasimomentum q in the nth
band at the lattice potential VK

lat, and p the initial momen-

tum of the Rb atom. Like Eq. (1), also Eq. (2) is based on
two assumptions. First, the binding energy of the dimer in
an excited band equals that in free space, Eb: this assump-
tion is reasonable whenever the dimer size is smaller than
the on-site oscillator length (@=

ffiffiffiffiffiffiffiffiffiffi

�Eb

p � lho), i.e., outside
a small region around the free-space resonance. Second,
we assume the resonance to occur at the energy crossing,
disregarding the shift due to the channel coupling, with the
exception of the n0 ¼ 0 MDR for which we take the same
channel-coupling shift as in free space (b� 0:45 mT). We
expect that, in the presence of the lattice, the channel
coupling should be smaller than in free space, decreasing
as we increase the band index and the lattice strength. As
shown in Fig. 4, Eq. (2) predicts the position of the MDRs
with improved accuracy with respect to the harmonic
oscillator analysis.
In addition, in the case of harmonic confinement, sym-

metry under parity inversion allows for coupling only
between oscillator levels differing by an even number of
quanta, at zero collision energy. This is not the case for

FIG. 3 (color online). Recorded atom number NK þ NRb, ver-
sus the Feshbach magnetic field without lattice (top), with a
SSDP lattice strength s ¼ 10 (middle) and s ¼ 23 (bottom).
Solid lines are a guide to the eye. Predictions based on the
harmonic oscillator analysis, Eq. (1) (dashed) and on band
structure, Eq. (2) (shaded areas) are shown.
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Bloch waves of generic quasimomentum q that are not
eigenstates of the parity inversion operator. For nonzero
collision energy, i.e., pRb > 0, coupling to odd n0 harmonic
oscillator levels is allowed, but suppressed at low tempera-
ture. We observe resonances for all indices n0, including
odd values, with similar strengths. In our case, due to the
initial temperature T ¼ 0:3 �K, quite a large part of the
first Brillouin zone (jqj< kL) is populated by K atoms,
since

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBTmK

p
=@ ’ 0:62kL. However, we expect that

peaks with odd n0 values are observed for sufficiently
long hold times even at zero temperature, due to the
interaction-induced momentum spread of atoms. For s ¼
23 and 25, we also detect a loss peak located between the
n0 ¼ 2 and n0 ¼ 3 peaks. At present we cannot explain
these features, that might be due to few-body physics.

In conclusion, we have realized a binary system, whose
components have different dimensionality, by means of a
SSDP lattice that tightly confines only one of them. By
monitoring 3-body inelastic losses we have observed for
the first time a series of multiple MDRs between (2D) 41K
and (3D) 87Rb atoms. Approximating the individual lattice
wells as harmonic potentials, a simple argument based on
the degeneracy of open and closed channels explains quali-
tatively the behavior of loss peaks and is consistent with
the more complete formal theory. However, the harmonic
oscillator analysis must be replaced with band theory to get
a quantitative agreement with the peaks location and to
explain the presence of odd n0 peaks. At present, a com-
prehensive theory of 3-body inelastic losses for multiple
neighboring MDR is still needed.

Besides their specific interest, mix-dimensional configu-
rations are also the extreme case of heteronuclear systems

with asymmetric confinement [16], that are frequently
encountered in the domain of atomic quantum gases. For
weak confinements (@! � Eb) the effect of the potential is
negligible and its asymmetry is irrelevant, but for tight
confinements, such as those in optical lattice, the scattering
modifications need to be taken into account [17], as man-
ifested by our findings. Mix-dimensional atomic systems
open many intriguing perspectives: long-lived p-wave
trimers close to a MDR [18], a rich Efimov physics [8],
and a new kind of heteronuclear molecules, whose con-
stituents live in different dimensions, could be
investigated.
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Note added in proof.—After submission of this manu-

script a new work on CIR in low dimensions has been
posted [19].
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