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We study correlation functions in (0þ 1)-dimensional maximally supersymmetric UðNÞ gauge theory,
which represents the low-energy effective theory of D0-branes. In the large-N limit, the gauge-gravity

duality predicts power-law behaviors in the infrared region for the two-point correlation functions of

operators corresponding to supergravity modes. We evaluate such correlation functions on the gauge

theory side by the Monte Carlo method. Clear power-law behaviors are observed at N ¼ 3, and the

predicted exponents are confirmed consistently. Our results suggest that the agreement extends to the

M-theory regime, where the supergravity analysis in 10 dimensions may not be justified a priori.
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Introduction.—Maximally supersymmetric Yang-Mills
(SYM) theories in various dimensions are important be-
cause of their connection to nonperturbative formulations
of string theory. Of particular interest is the ð0þ 1ÞD SYM
theory with UðNÞ gauge symmetry, which is supposed to
describe the low-energy gravitational dynamics of D0-
branes in 10D type IIA superstring theory. In an appropri-
ate large-N limit, this theory was proposed to be a defini-
tion of M theory in a special lightlike frame, and it is
commonly referred to as the matrix theory [1]. M theory
is a hypothetical 11D theory [2], whose low-energy effec-
tive theory is given by 11D supergravity, and it is believed
to appear in the strong coupling limit of 10D type IIA
superstring theory.

Indeed it was confirmed that scattering amplitudes in the
matrix theory at weak coupling are consistent with predic-
tions from 11D supergravity. Even the three-body force,
which is a characteristic nonlinear effect of general rela-
tivity, has been reproduced [3] from the quantum loop
effects of massive open strings connecting D0-branes. On
the other hand, direct perturbative calculations of correla-
tion functions, which could provide crucial information on
the as yet mysterious theory, are plagued by severe infrared
divergences caused by the massless modes inherent in the
theory. We therefore need genuinely nonperturbative meth-
ods to study such quantities.

In the case of N ¼ 4 SYM theory in (3þ 1) dimen-
sions, various useful insights have been gained from the
anti-de Sitter/conformal field theory correspondence [4,5].
This conjectural duality enables us to study the N ¼ 4
SYM theory in the large-N limit with large ’t Hooft cou-
pling constant by using the weakly coupled supergravity,
which describes the low-energy limit of the string theory.
Likewise, SYM theory in (pþ 1)-dimensions, correspond-

ing to the world-volume theory of Dp-branes, is expected
to be dual to a superstring theory on the Dp-brane back-
ground in the near-horizon limit [6,7].
Assuming this duality for the p ¼ 0 case and using the

known dictionary [8] between the supergravity modes and
the matrix theory operators, one may hope to calculate the
correlation functions in the large-N limit, on the basis of
the Gubser-Klebanov-Polyakov-Witten prescription [5].
This program was carried out a decade ago by Y.S. and
T.Y. [9] using the ‘‘generalized conformal symmetry’’
[7,10] as a guide for classifying and interpreting the ob-
tained results. The prediction is that the two-point corre-
lation functions obey the power law

hOðtÞOðt0Þi / 1

jt� t0j2�þ1
; (1)

for a set of operators OðtÞ corresponding to the supergrav-
ity modes. The exponents � are fractional numbers which
differ from the canonical values, and they are related to the
generalized conformal dimensions � of the operators
under consideration by � ¼ �1þ 10

7 � [9]. The power-

law behavior conforms to the existence of a unique thresh-
old bound state at zero energy [11] in the gauge theory,
which corresponds to single-body states in the graviton
supermultiplet.
This result has been rederived in later works [12], ex-

tending the analysis in Ref. [9] to general Dp-branes (p <
5) in the PP-wave limit. There it has also been shown that
the infrared behavior of the correlation functions for op-
erators corresponding to excited stringy modes is typically

expf�cðg2YMNjt� t0j3Þ1=5g up to power corrections.
The near-horizon limit of the D0-brane background is

valid when the radial coordinate r in the bulk supergravity

satisfies r � ðgsNÞ1=7 in the string unit �0 ¼ 1. The analy-
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sis using the supergravity approximation is then possible
when gsN � 1, and is trustable when both the background
curvature and the effective string coupling given by the
dilaton expectation value are small. The string coupling
becomes stronger towards the center, while the curvature
becomes larger towards the boundary. Taking into account
the fact that the radial coordinate r is related to the time

scale t at the boundary as r� ðt=�1=2Þ�2=5 [9] with � �
g2YMN � gsN, the conditions for justifying the supergrav-
ity result (1) can be summarized as [6,7,9]

��1=3 � jt� t0j � ��1=3N10=21: (2)

Hence, the application of the gauge-gravity duality is
legitimate when one studies the region which is sufficiently
infrared compared to the length scale set by �. Since the
upper bound in (2) diverges at large N, the infrared behav-
ior of the correlation functions can be predicted reliably
from the supergravity analysis in the large-N limit.

In this Letter we evaluate the correlation functions on
the gauge theory side by the Monte Carlo method [13] and
compare the results with the predictions from the gauge-
gravity correspondence. Related Monte Carlo analyses
have been recently applied by the authors, including
M.H. and J. N., to reproduce the black hole thermodynam-
ics [14,15] and the Schwarzschild radius [17] of the dual
geometry. To the best of our knowledge, this is the first
attempt to compute the matrix theory correlation functions
from first principles [18]. Our Monte Carlo data are con-
sistent with the supergravity predictions with reasonable
accuracy despite the fact that the matrix size is as small as
N ¼ 3.

Simulating matrix theory.—The action of the matrix
theory can be written (in the Euclidean convention) as

S ¼ N

�

Z �

0
dtTr

�
1

2
ðDtXiÞ2 � 1

4
½Xi; Xj�2

þ 1

2
c �Dtc � � 1

2
c �ð�iÞ��½Xi; c ��

�
; (3)

where Xiði ¼ 1; � � � ; 9Þ and c �ð� ¼ 1; � � � ; 16Þ are N �
N bosonic and fermionic Hermitian matrices, on which the
covariant derivative Dt acts as Dt ¼ @t � i½A; �� with the
gauge field A. The 16� 16 matrices �i satisfy the Clifford
algebra f�i; �jg ¼ 2�ij. It is convenient to adopt units in

which � ¼ 1 without loss of generality. This does not
contradict the conditions for the bulk theory, since the
gauge theory has no independent length scale other than

the coupling constant g�2=3
YM and hence the strong coupling

limit amounts to the IR limit.
In order to put the system on a computer, we have to

introduce the UV and IR cutoffs appropriately. The extent
� in the Euclidean time direction represents the IR cutoff,
which should be sufficiently large in order to see the
correct infrared properties. Since we are not interested in
the finite temperature behaviors unlike in Refs. [14,17], we
impose periodic boundary conditions for both bosonic and

fermionic matrices, respecting supersymmetry. In order to
introduce the UV cutoff, we first fix the gauge as AðtÞ ¼
1
� diagð�1; � � � ; �NÞ, where��< �i 	 �, include the cor-

responding Fadeev-Popov determinant, and then introduce
a Fourier mode cutoff � as XiðtÞ ¼

P
�
n¼��

~Xine
in!t and

c �ðtÞ ¼
P

�
n¼��

~c �ne
in!t, where ! ¼ 2�=�. Integration

over the fermionic matrices yields a Pfaffian, which could
be complex in general. As we did in the previous works
[14,17], we simply neglect the phase of the Pfaffian assum-
ing that it does not affect the results. The system of finite
degrees of freedom obtained this way can be simulated
using the rational hybrid Monte Carlo algorithm [20] as in
Ref. [14]. While the agreement with the gravity results
provides strong empirical evidence for this assumption,
purely theoretical justification remains an important open
question.
Correlation functions.—First let us study a series of

operators Jþij
l;i1;���;il (l 
 1), which is defined by

Jþij
l;i1;���;il �

1

N
StrðFijXi1 � � �XilÞ; (4)

where Fij � �i½Xi; Xj� and Str represents the symme-

trized trace treating Fij as a single unit. The value of � in

(1) is predicted in this case as � ¼ 2l=5 [9].
Since we are dealing with the Fourier modes in our

simulation, the two-point functions which are directly
accessible are those in the momentum space

h ~OðpÞ ~Oð�pÞi, where p ¼ n!. Correlation functions in
the real space can be obtained by the inverse Fourier

transformation hOðtÞOð0Þi ¼ 1
�

P
ph ~OðpÞ ~Oð�pÞieipt.

However, the results obtained in this way oscillates with
the frequency of Oð�!Þ as a result of the Gibbs phenome-
non. For the series of operators (4), we find that the
momentum-space correlator falls off as p�2 at large p.
Assuming that this behavior continues to infinite p, we
extend it up to p ¼ 1000!, and then make the inverse
Fourier transformation, which removes the Gibbs phe-
nomenon completely [13]. In Fig. 1, we show the real-
space correlation functions obtained in this way. The pre-
dicted power-law behavior can be seen in the region 0:5 &
t & 1:5, which is somewhat wider than the criterion (2) for
justifying the supergravity analysis. Note that the IR bound
of (2) is jt� t0j � 1:69 for N ¼ 3. Considering that 1.5 is
close to �=2 ¼ 2, we expect that the deviation observed at
t * 1:5 is rather due to the IR cutoff.
Our data deviate from the power-law behavior at t &

0:5, which corresponds to the weakly coupled regime with
the effective ’t Hooft coupling & 0:1. It would have been
nice if we could compare the data in this regime with
perturbative calculation, which is however problematic
due to severe IR divergences as we mentioned earlier.
Let us next study the operator Tþi

2;jk defined by

Tþi
2;jk �

1

N
StrððDtXiÞXjXkÞ; (5)
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for which � is predicted to be � ¼ 4=5 [9]. Unlike the
previous case, the two-point function in the Fourier space
does not fall off as p�2 at large p. This is likely due to the
presence of a derivativeDt in (5). Furthermore, we observe
considerable dependence on the UV cutoff�. We therefore
evaluate the two-point function in the momentum space at
various � and make an extrapolation to � ¼ 1 at each p.
The leading finite � effects are consistent with 1=� as one
might expect theoretically, and we make an extrapolation
with � ¼ 6, 8, 12 for 0 	 p=ð2�Þ 	 0:6 and � ¼ 8, 12,
16 for p=ð2�Þ 
 0:8. Figure 2 shows the results obtained
in this way for N ¼ 3, � ¼ 5.

On the other hand, the prediction (1) in the Fourier space
reads [9]

h ~OðpÞ ~Oð�pÞi ’ fðpÞ þ jpj2�gðpÞ (6)

at small p, where fðpÞ and gðpÞ are analytic functions
(gð0Þ � 0), which cannot be determined by the supergrav-
ity analysis. The odd powers of p in fðpÞ and gðpÞ are
forbidden by the time reflection invariance. For the present
operator, considering that � ¼ 4=5, a few leading terms at
small p are predicted to be of the form

h ~Tþ
2 ðpÞ ~Tþ

2 ð�pÞi ’ aþ bp2 þ cjpj2�; (7)

where a, b and c are constants. Note that the polynomial
terms do not affect the long-distance behavior of the cor-
relation function. Treating � as a free parameter and fitting
our data in 0 	 p=ð2�Þ 	 1 to (7), we obtain � ¼ 0:80�
0:03 as in Fig. 2.
As the last example, let us consider the operator

Tþþ
2;ij � 1

N
trðXiXjÞ ði � jÞ; (8)

for which the supergravity analysis predicts � ¼ �3=5 [9].

The two-point function is predicted to behave as jt� t0j1=5
in the real space, which is divergent as jt� t0j ! 1. This
IR divergence is reminiscent of the free-field behavior jt�
t0j2 albeit with much weaker power. Here we examine the
behavior (6) for small p in the Fourier space. Considering
that � ¼ �3=5, a few leading terms are predicted to be of
the form

h ~Tþþ
2 ðpÞ ~Tþþ

2 ð�pÞi ’ ajpj2� þ bþ cjpj2�þ2: (9)

Note that the leading term is divergent as p ! 0, as op-
posed to the previous cases with vanishing behaviors. In
Fig. 3, we show a log-log plot of the two-point function.
We extrapolated our data to � ¼ 1 as we did for Tþ

2 .
Treating � as a free parameter and fitting our results to (9)
in the region 0:3 	 p=ð2�Þ 	 2, we obtain � ¼ �0:61�
0:02. The deviation from the behavior (9) at small p is most
likely due to finite IR cutoff effects as one can see from the
trends with increasing �.
Summary and discussion.—In this Letter we presented

the first Monte Carlo evaluation of two-point correlation
functions of the supergravity operators in the matrix the-
ory. In particular, we observed that the power law predicted
by the gauge-gravity correspondence continues to hold in
the infrared region beyond the naive criterion for the
validity of the supergravity analysis.
From the gauge theory point of view, the existence

of a threshold bound state at zero energy requires the power
law at sufficiently large jt� t0j for any Nð
 2Þ. In fact,
the existence of a unique threshold bound state for each
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FIG. 2. The momentum-space two-point correlation function
h ~Tþ

2 ðpÞ ~Tþ
2 ð�pÞi is plotted for N ¼ 3 and � ¼ 5. The dotted line

represents a fit to the behavior (7) treating � as a free parameter
in the range 0 	 p=ð2�Þ 	 1. The best fit is obtained for � ¼
0:80� 0:03.
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FIG. 3. The momentum-space two-point correlation function
h ~Tþþ

2 ðpÞ ~Tþþ
2 ð�pÞi is plotted in the log-log scale for N ¼ 3. The

dotted line represents a fit to the behavior (9) treating � as a free
parameter in the range 0:3 	 p=ð2�Þ 	 2. The best fit is ob-
tained for � ¼ �0:61� 0:02.
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FIG. 1. The real-space two-point correlation functions
hJþl ðtÞJþl ð0Þi (l ¼ 1, 2, 3, 4) are plotted for N ¼ 3 and � ¼ 4.
The UV cutoff is � ¼ 16. The straight lines are fits to the
predicted power-law behavior.
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Nð
 2Þ has been argued, based on the calculation of the
Witten index [21]. Let us also consider the spectral repre-
sentation of the two-point function

h ~OðpÞ ~Oð�pÞi ¼
Z

d�	ð�Þ 1

p2 þ�2
: (10)

The power law of the two-point function at small p implies
that the spectral density 	ð�Þ behaves as 	ð�Þ ��2�þ1 at
small �. The fact that the exponent � increases in general
[9] with the angular momentum carried by the operator is
consistent with the continuous mass spectrum of the inter-
mediate many-body states composed of the zero-energy
bound states.

On the gravity side, let us emphasize that the upper
bound in (2) is merely a sufficient condition for justifying
the supergravity analysis. Here we recall that the wave
function of the supergravity fluctuations obtained in
Ref. [9] is exponentially small in the central region.
Therefore, it is possible that the 10D supergravity approxi-
mation in this region is not affected by the increasingly
large effective string coupling at small r and hence at large
jt� t0j. On the other hand, in the short-distance regime

jt� t0j � ��1=3, where the curvature becomes large on
the gravity side, we expect large deviations from the
power-law behavior (1). This is clear, in particular, for
the cases with 2�þ 1> 0 since there should be no UV
singularity in one dimension. Such deviations are indeed
observed in the stringy PP-wave analysis [12] on the bulk
side.

Another significant aspect of our results is that the
exponents obtained from the Monte Carlo data at N ¼ 3
essentially coincide with the predictions in the large-N
limit. We have also studied the N ¼ 2 case, but the ex-
ponents are unaltered within numerical uncertainties. This
suggests that the exponents are independent of N without
Oð1=N2Þ corrections, possibly due to the BPS nature of the
supergravity modes. Furthermore, since the exponents can-
not depend on the coupling constant �, the same exponents
should be valid in theM-theory regime, where we consider
the large-N limit with fixed gs � g2YM and with the scaling
jt� t0j � Nj
� 
0j of the light-cone time (in the string
unit), corresponding to the infinite momentum limit Pþ ¼
N=gs ! 1. For possible interpretations of the predicted
exponents from the 11 dimensional viewpoint of the matrix
theory conjecture, we refer the reader to Ref. [10] in
addition to [9]. More details of our analysis as well as
results on other correlation functions shall be reported in a
separate paper.
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