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Vortex shedding from an obstacle potential moving in a Bose-Einstein condensate is investigated. Long-

lived alternately aligned vortex pairs are found to form in the wake, which is similar to the Bénard–

von Kármán vortex street in classical viscous fluids. Various patterns of vortex shedding are systematically

studied and the drag force on the obstacle is calculated. It is shown that the phenomenon can be observed

in a trapped system.
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The formation of a train of alternate vortices in the wake
past an obstacle, known as the Bénard–von Kármán vortex
street, is a ubiquitous and intriguing phenomenon in fluids.
Since the pioneering experimental study by Bénard [1] and
theoretical consideration by von Kármán [2], numerous
studies have been made on the phenomena of vortex street
formation [3].

The behavior of a viscous fluid flowing past an obstacle
is determined by the Reynolds number Re, which is a
dimensionless parameter that includes the kinematic vis-
cosity. The wake of a cylinder is steady for Re below
around 50, and a vortex street emerges for 102 & Re &
105, which becomes turbulence for a larger Re. This im-
plies that the viscosity plays an important role in vortex
street formation in classical fluids. For superfluids, how-
ever, the Reynolds number cannot be defined because of
the absence of viscosity. Moreover, the vortex quantization
makes superfluid dynamics quite different from classical
fluid dynamics. Therefore, it is not obvious whether the
instability of the wake and subsequent vortex street gen-
eration occur in superfluids. According to von Kármán’s
theory [2,4], a vortex street is expected to be very long-
lived in inviscid fluids, once it is created.

In this Letter, by numerically solving the Gross-
Pitaevskii (GP) equation, we show that long-lived alter-
nately aligned vortex pairs are formed in the wake of an
obstacle potential moving in a Bose-Einstein condensate
(BEC), which is similar to the vortex street in classical
fluids. Mean-field analysis of systems of a BEC with a
moving potential has been performed by many authors
from the viewpoints of drag force [5–7], vortex dynamics
near the cylinder [8,9], critical velocity [10], scaling laws
[11], supersonic flows [12,13], and multicomponent sys-
tems [14,15]. However, vortex street formation was not
found in these studies, probably because the parameter
region for which a vortex street emerges is narrow, as
shown later.

We consider a BEC of atoms with mass m and an
obstacle potential V moving in the �x direction at a
velocity v. In the mean-field theory, the condensate is
described by the macroscopic wave function c obeying
the GP equation given by

i@
@c

@t
¼ � @

2

2m
r2c þ Vc þ gjc j2c ; (1)

where g ¼ 4�@2a=m with a being the s-wave scattering
length of the atoms. We employ a Gaussian potential with
peak strength V0 and radius d moving in the �x direc-
tion at a velocity v as V ¼ V0 expf�½ðxþ vtÞ2 þ y2�=d2g.
Normalizing space and time by @=ðmgn0Þ1=2 and @=ðgn0Þ,
where n0 is the atom density without perturbation, we can
eliminate the interaction parameter g from Eq. (1). We
numerically solve Eq. (1) in two dimensions under the
periodic boundary condition using the pseudospectral
method. The initial state is the stationary state of Eq. (1)
with v ¼ 0 plus a small amount of noise to break the
symmetry.
Figure 1 shows typical wakes flowing past an obstacle

potential with V0=ðgn0Þ ¼ 100. For a sufficiently small
velocity v, the flow around the obstacle is a steady laminar
flow and no quantized vortex is created. When the velocity
v exceeds a critical velocity, which depends on the inter-
action strength and the shape of the potential, vortex-
antivortex pairs are created [5]. The critical velocity for
the vortex creation is of the order of the speed of sound

ðgn0=mÞ1=2. When created vortices separate from the po-
tential, the flow velocity around the potential again exceeds
the critical velocity and subsequent vortices are created. A
train of vortex-antivortex pairs is thus generated behind the
potential. Since a symmetric double row of vortices is
unstable [4], the vortex pairs are dislocated sinuously as
shown in Fig. 1(a). Nore et al. [16] showed that such a
staggered vortex pattern is formed if a double row of
vortices is prepared with an appropriate perturbation.
Since a pair of point vortices with circulations �h=m (h:
Planck’s constant) and distance d moves in the direction
perpendicular to a line between the pair at a velocity
@=ðmdÞ [4], the alternately inclined vortex pairs move in
two directions [white arrows in Fig. 1(a)], forming a
V-shaped wake as in Fig. 1(a). The divergence of the
wake is significant for large v with small d, which forms
a pattern similar to supersonic flow [12,13].
Figure 1(b) shows the main result of this study. The

significant difference from Fig. 1(a) is that the vortices in
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a pair created by the obstacle potential at a time have the
same circulation. Since two point vortices having the same
circulation h=m rotate around their center at an angular
frequency 2@=ðmd2Þ without changing their distance [4],
the created vortex pairs in Fig. 1(b) remain bound and
rotate. The pairs with opposite circulations are alternately
released from the obstacle potential to form a train of
vortex pairs, resembling a Bénard–von Kármán vortex
street [17]. In contrast to the vortex arrangement originally
considered by von Kármán, in which isolated point vorti-
ces are aligned, the vortex pairs constitute the vortex street
in the present case. The detailed dynamics of the vortex
street formation just behind the obstacle potential is shown
in Fig. 2. The pairs of vortices are released obliquely

backward left and right with alternate circulations. We
find from Figs. 1(b) and 2 that the distance between the
two vortex rows is b ’ 0:24� and the distance between
two pairs in a row is ‘ ’ 0:87� on average, and hence

b=‘ ’ 0:28, where � ¼ @½103=ðmgn0Þ�1=2. This ratio is
in good agreement with the stability condition of

von Kármán’s vortex arrangement b=‘ ¼ ��1cosh�1
ffiffiffi
2

p ’
0:28 [4]. In fact, the vortex street in Fig. 1(b) survives at
least t > 103@=ðgn0Þ. The vortex street in Fig. 1(b) moves

in the �x direction at a velocity ’ 0:14ðgn0=mÞ1=2 ’
0:8h=ð ffiffiffi

2
p

‘mÞ. The velocity of von Kármán’s point vorti-
ces, in which each vortex has a circulation 2h=m, is

h=ð ffiffiffi
2

p
‘mÞ [4]. For large d and v, the periodicity in the

wake seems to disappear [Fig. 1(c)].
We systematically performed numerical simulations for

various values of d and v to determine the parameter
regions for the types of wakes in Fig. 1. Figure 3 shows a
rough sketch of each parameter region. The regions of the
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FIG. 2 (color). Serial snapshots of the density profiles for the
parameters in Fig. 1(b) in the frame moving with the potential.
The time interval is 10@=ðgn0Þ. The arrows indicate the direc-
tions of circulations. The field of view is 2�� �. The color scale
is the same as that in Fig. 1.
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FIG. 1 (color). Density and phase distributions of a condensate past an obstacle potential. The velocity and potential width are
ð~v; d=�Þ ¼ ð2:4; 0:04Þ in (a), (2.6,0.05) in (b), and (3.0,0.05) in (c), where ~v ¼ v½103m=ðgn0Þ�1=2=ð2�Þ and � ¼ @½103=ðmgn0Þ�1=2.
The white arrows in (a) indicate the directions in which the vortex-antivortex pairs move. The density is normalized by n0. The field of
view is 6�� 3�. In the numerical calculation, a 32�� 8� space is discretized into 4096� 1024.
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FIG. 3 (color). Dependence of the patterns of wakes on the
normalized Gaussian width d=� and velocity ~v of the potential.
The green, blue, and red regions correspond to the flow patterns
shown in Figs. 1(a)–1(c), respectively. The white region corre-
sponds to stationary laminar flow. The white arrow indicates the
change of ~v used in Fig. 4.
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periodic behaviors shown in Figs. 1(a) and 1(b) are located
between the regions of steady laminar flow (white region in
Fig. 3) and irregular flow (red). We note that the parameter
region for vortex street formation is rather restricted,

0:04 & d=� & 0:13 and 1:9 & ~v & 2:8, where ~v ¼
v½103m=ðgn0Þ�1=2=ð2�Þ. This is in contrast with classical
fluids, in which the vortex street emerges for a wide range
of Reynolds number.

Figure 4 shows gradual change from the vortex-
antivortex pair creation to the vortex street formation,
where d=� ¼ 0:05 is fixed and v is gradually increased
as shown in the white arrow in Fig. 3. In Figs. 4(a) and 4(b),
the velocity corresponds to the green region in Fig. 3 and
vortex-antivortex pairs are created. In Fig. 4(c), ~v crosses
to the blue region in Fig. 3 and the vortex cre-
ation � � � ðþ�Þð�þÞðþ�Þð�þÞ � � � gradually changes
to � � �þÞð��ÞðþþÞð��Þðþ � � � , resulting in the vortex
street formation in Fig. 4(d), where þ and � indicate the
clockwise and counterclockwise circulations of vortices.
Such a sequence of vortex shedding was also found in
Ref. [11]. The change from Figs. 4(a) to 4(d) with an
increase in ~v is quite different from the behavior in clas-
sical viscous fluids, in which a pair of eddies in the wake
becomes unstable and grows into a vortex street in the
downstream region.

Figure 5 shows the drag force on the obstacle potential
given by F ¼ @t

R
drc �ði@rÞc . The initial state is the

stationary state for v ¼ 0. At t ¼ 0 the potential starts to
move at a velocity v. Figure 5(a) corresponds to the vortex-
antivortex pair creation in Fig. 1(a). For ~t & 200, Fx oscil-
lates while Fy ’ 0, indicating that the vortex-antivortex

pairs are shed from the potential symmetrically. For ~t *
200, the vortex pairs begin to incline as in Fig. 1(a), and Fy

also starts to oscillate. Figure 5(b) corresponds to the
vortex street formation, where both Fx and Fy oscillate

for ~t * 200. The oscillation in Fy in Figs. 5(a) and 5(b) is

due to the alternate shedding of vortices and hence its
frequency is half the vortex shedding frequency, i.e., the
frequency of Fx. It is interesting to note that Fy in Fig. 5(c)

oscillates, even though Fig. 1(c) does not seem to have
periodicity. A similar phenomenon is also observed in
classical fluids with a large Reynolds number [18].
Next, we perform full three-dimensional simulation for a

realistic system confined in a trapping potential. A BEC
stirred by a moving obstacle potential has been studied
experimentally in Refs. [19–21]. We consider a situation in
which a BEC of 87Rbwith the number of atomsN ¼ 2:1�
106 is confined in a harmonic potential mð!2

xx
2 þ!2

yy
2 þ

!2
zz

2Þ=2 with ð!x;!y;!zÞ ¼ 2�� ð56; 350; 4:3Þ Hz. This
is the same condition as in the experiment performed by
the Berkeley group [22]. The obstacle potential is produced
by a blue-detuned Gaussian laser beam along the y direc-
tion with d ¼ 1:5 �m and V0 ¼ 100@!x, which is initially
located at z ¼ �100 �m and x ¼ 0 at t ¼ 0 and moves in
the z direction at a velocity v ¼ 0:76 mm=s for t > 0. The
s-wave scattering length is assumed to be 100aB with aB
being the Bohr radius. Figure 6 shows the column density
integrated along y, the phase profiles on the y ¼ 0 plane,
and the isodensity surface at t ¼ 160 ms. We find that a
vortex street is generated behind the moving potential, as in
Fig. 1(b), which confirms that our finding can be experi-
mentally observed in an inhomogeneous three-dimensional
system. The ratio b=‘ in Fig. 6 is about 0.28, which agrees
with the stable condition of the vortex street.
We have numerically confirmed that an impenetrable

disk-shaped potential (V ¼ 1 for r < d and V ¼ 0 for
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FIG. 5 (color online). Time evolution of the normalized drag
force ~F ¼ 2F=ðAmn0v

2Þ, where A is the projected area of
the obstacle potential. The solid and dashed lines show ~Fx and
~Fy. The parameters used in (a)–(c) are the same as those in

Figs. 1(a)–1(c), respectively.
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FIG. 4 (color). Snapshots of the density profiles for d=� ¼
0:05. The velocity is ~v ¼ 2:2 for ~t < 1000 and ~v ¼
2:2þ 0:4ð~t� 1000Þ=4000 for ~t > 1000. The black and white
circles indicate clockwise and counterclockwise circulations,
respectively. The field of view is 3�� 8�. The color scale is
the same as that in Fig. 1.
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r > d) also generates vortex patterns similar to those in
Fig. 1. This potential can be realized by a flattop laser beam
or a Gaussian beam in which limit V0 ! 1 and d ! 0 is
taken with d2 logðV0=�Þ being fixed, where � is the
chemical potential.

A future prospect of this study is to provide a mathe-
matical description of the alternate creation of the vortex
pairs as shown in Fig. 2. From an experimental point of
view, it is important to study the cases of various trapping
potentials including cigar-shaped and oblate traps. Various
shapes of obstacle potentials also merit further study.

In conclusion, we have shown that pairs of quantized
vortices shed from an obstacle potential moving in a BEC
alternately align and survive for a long time [Figs. 1(b) and
2], which closely resembles the Bénard–von Kármán vor-
tex street in classical fluids. We have obtained the parame-
ter region in which a vortex street emerges (Fig. 3) and
calculated the drag force (Fig. 5). We have shown that
vortex street formation can be observed in a trapped BEC
disturbed by a blue-detuned laser beam (Fig. 6). Since the
vortex street generation typifies the great diversity of clas-
sical fluid dynamics, the emergence of the vortex street in a
BEC implies that a rich variety of phenomena is still
unrevealed in quantum hydrodynamics.

We thank Takeshi Miyazaki and Naoya Takahashi for
their valuable comments. This work was supported by

KAKENHI from MEXT (No. 17071005 and
No. 20540388).

[1] H. Bénard, C. R. Acad. Sci. Paris Ser. IV 147, 839 (1908);
147, 970 (1908).
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FIG. 6 (color). A BEC of 87Rb atoms confined in a harmonic
potential at t ¼ 160 ms, where the Gaussian potential is initially
located at the marked position (�) and starts to move in the z
direction at a constant velocity. (a) Column density normalized
by Nm!x=@. The dashed region is magnified in the lower panels.
The gray scale image shows the phase at y ¼ 0. The field of view
is 300� 30 �m for the main panel and 40� 10 �m for the
lower panels. (b) Translucent display of the isodensity surface
for the state shown in (a).
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