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We investigate the atom-optical analog of degenerate four-wave mixing by colliding two Bose-Einstein

condensates of metastable helium. The momentum distribution of the scattered atoms is measured in three

dimensions. A simple analogy with photon phase matching conditions suggests a spherical final

distribution. We find, however, that it is an ellipsoid with radii smaller than the initial collision momenta.

Numerical and analytical calculations agree with this and reveal the interplay between many-body effects,

mean-field interaction, and the anisotropy of the source condensate.
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The field of atom optics has developed to the point that
one can now speak of the beginning of ‘‘quantum-atom
optics’’ [1] in which atoms are manipulated in ways similar
to photons and in which quantum fluctuations and entan-
glement play an important role. The demonstration of atom
pair production [2,3], either from the dissociation of ultra-
cold molecules, a process analogous to parametric down-
conversion [4–6], or from collisions of Bose-Einstein con-
densates (BECs) [7–10], analogous to four-wave mixing
(FWM) [11–21], holds considerable promise for generat-
ing atomic squeezed states and demonstrating nonlocal
Einstein-Podolsky-Rosen (EPR) correlations [4,5,22,23].
In both these systems, atom-atom interactions play the
role of the nonlinear medium that allows conversion pro-
cesses. Atoms are not, however, exactly like photons, and
in spite of their formal similarity, the processes of pair
production of photons and of atoms exhibit some interest-
ing and even surprising differences that must be understood
in order for the quantum-atom optics field to advance. In
this work, we discuss one such effect.

In optical FWM or parametric down-conversion [24],
energy conservation requires that the sum of the energies of
the outgoing photons be fixed by the energy of the input
photon(s). Phase matching requirements impose con-
straints on the directions and values of the individual
photon momenta. A simple case is degenerate, spontane-
ous FWM (i.e., two input photons of equal energy) in an
isotropic medium, for which energy conservation and
phase matching require that the momenta of the output
photons lie on a spherical shell whose radius is that of the
momenta of the input photons.

We have performed the atom-optical analog of degen-
erate FWM in colliding BECs while paying careful atten-
tion to the momenta of the outgoing atoms. We find that

unlike the optical case, the output momenta do not lie on a
sphere, but rather on an ellipsoid with short radius smaller
than the input momentum. This behavior is due to a subtle
combination of atom-atom interactions, which impose an
energy cost for pair production, and the anisotropy of the
condensates, which affects the scattered atoms as they
leave the interaction region.
Although an analogous effect could exist in optics,

optical nonlinearities are typically so small that the effect
is negligible. However, in the process of high-harmonic
generation in intense laser fields, a similar effect has been
discussed [25]. There, phase-matching conditions can be-
come significantly intensity dependent, and the pondero-
motive acceleration of electrons alters the phase and
energy balance of the harmonic generation process. Thus
the ponderomotive force plays a role loosely analogous to
that of the mean-field repulsion in our problem.
To fully understand the results, we have simulated the

BEC collision using a fully quantum, first-principles nu-
merical calculation based on the positive-P representation
method [17,20], and find quantitative agreement with the
experiment. We have also analyzed the problem using a
stochastic implementation of the Bogoliubov approach,
which allows us to identify and illustrate the contributions
of various interaction effects in the process.
The experimental setup is similar to that described in

[3]. We start from a BEC of �105 atoms magnetically
trapped in themx ¼ 1 sublevel of the 23S1 metastable state
of helium-4. The trap is cylindrically symmetric with axial
and radial frequencies of 47 and 1150 Hz, respectively. The
bias field of �0:25 G along the x axis defines the quanti-
zation axis.
To generate the two colliding BECs, we use a two-step

process. First, the atoms are transferred to themx ¼ 0 state
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by a stimulated Raman transition. Using a 4 �s long pulse,
we transfer 90% of the atoms to this magnetically un-
trapped state. 1 �s after the end of the Raman pulse, the
BEC is split into two counterpropagating condensates with
a Bragg pulse driven by two laser beams propagating at
approximately 90�, as shown in Fig. 1(a). The parameters
of the Bragg pulse are adjusted to transfer half of the atoms
to a state moving at relative velocity 2v0 in the yz plane,
with v0 ¼ 7:31 cm=s, which is �4 times the speed of
sound in the center of the BEC. The condensates thus
separate along the radial axis, unlike in the experiment
of Ref. [3]. To analyze the data we will use a center-of-
mass reference frame, in which the collision axis is defined
as Z (tilted by about 45� from z), X � x, and Y is orthogo-
nal to Z and X (see Fig. 1).

After the collision, the atoms fall onto a microchannel
plate detector placed 46.5 cm below the trap center. A
delay line anode permits reconstruction of a 3D image of
the cloud of atoms. The flight time to the detector (300 ms),
is long enough that the 3D reconstruction gives a 3D image
of the velocity distribution after the collision. Binary,
s-wave collisions between atoms in the BECs should
(naively) result in the scattered particles being uniformly
distributed on a sphere in velocity space with radius equal
to the collision velocity v0. The collision along the radial
axis allows access to the entire collision halo in a plane
containing the anisotropy of the BEC (the XY plane) with-
out distortion from the condensates. As in Ref. [3], we
observe a strong correlation between atoms with opposite
velocities confirming that the observed halo is indeed the
result of binary collisions.

In Fig. 2(a) we show a slice of the scattering halo in the
XY-plane that reveals its annular structure. A dashed circle

of radius 1, indicating the momentum @k0 ¼ mv0, is
shown for comparison. We can see that the ring corre-
sponding to the mean momentum of scattered atoms does
not lie exactly on the dashed line, but rather slightly within
it, and that the deviation is anisotropic. The ring thickness
and density are also anisotropic, though in the present work
we concentrate on the behavior of the radius. To analyze
the data more quantitatively, we divide the ring into azi-
muthal sectors and fit a Gaussian peak plus a linearly
sloped background to extract a value for the halo radius
as a function of the angle � [20]. It is clear from Fig. 2(c)
that the radius of the halo in momentum space varies
approximately sinusoidally by �2% and that it is almost
always smaller than k0.
To understand this result qualitatively, we first consider

the energy balance for pair production in a homogeneous
BEC. Removing an atom from the condensate liberates an
energy corresponding to the chemical potential, g�, where
g ¼ 4�a@2=m, a is the s-wave scattering length, and � the
density. Here, we have two counterpropagating conden-

FIG. 1 (color online). (a) Geometry of the Bragg beams and
level scheme of the 23S1 � 23P0 transition of 4He (at 1083 nm).
A Bragg pulse of two �-polarized laser beams (shown by the two
arrows) detuned by �=2� ¼ 600 MHz produces two counter-
propagating BECs that separate along their radial dimension at
approximately 45� to the vertical (z) axis at relative velocity 2v0.
(b) Schematic diagram of the collision geometry in the center-of-
mass frame in which we denote the collision axis as Z. The two
disks represent the colliding condensates in momentum space.
The sphere represents the halo of scattered atoms. The cigar
shaped initial condensate with axial direction X ¼ x is shown in
the center. We analyze the experimental data in the XY plane.

FIG. 2 (color online). (a) Average momentum space density
nðkX; kYÞ (in arb. units, from �1500 experimental runs) of the
experimentally observed scattering halo on the equatorial plane
(kX, kY); the density is averaged over a disk of thickness
[�0:1k0, þ0:1k0] along kZ. (b) Same as in (a) but from the
positive-P simulation (see text) after 70 �s collision time, in
units of 10�18 m3. (c) Plot of the peak radius of the scattering
halo on the equatorial plane versus the azimuthal angle �. Black
squares are experimental data, while the red circles are from the
simulation. The data is binned into 18 angular bins of �� ¼
20�, and each data point for the peak radius is derived from a
Gaussian fit to the radial distribution nðkR;�Þ � nðkX ¼
kR cos�; kY ¼ kR sin�Þ at the respective angle � (the error
bars show the statistical uncertainty in the fits; in addition, there
is a systematic uncertainty of �1:5% in the determination of the
average radius of the sphere). The smooth line is a sinusoidal fit
to the experimental data.
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sates (each having density �=2), which for simplicity we
model as plane waves. In the presence of the spatial
modulation due to their interference, the energy liberated
by removing one atom changes to 3g�=2 [26]. On the other
hand, placing an atom in a scattering mode requires an
energy 2g� since the scattered atom is distinguishable
from those in the condensate. Energy conservation, includ-
ing the mean-field contributions, gives

@
2k20
2m

þ 3

2
g� ¼ @

2k2s
2m

þ 2g�; (1)

where we denote the absolute momentum of one scattered
atom @ks. Thus, the initial scattered momentum is smaller
than the ingoing momentum, ks < k0. This effect was
observed in a numerical simulation in Ref. [14]; a similar
effect was discussed in Ref. [8]. Using plane waves to
model the BECs is of course a crude approximation, but
if we replace � by the central density of an inhomogeneous
BEC, we find ks ¼ 0:96k0 for the experimental parameters.

In addition to this initial energy balance analysis, a
second effect must be taken into account. Once created,
the scattered atoms escape from the condensate region and
gain energy from the mean-field interaction potential. The
effect is similar to that reported in Ref. [26], an experiment
which observed the mutual repulsion of two BECs after
Bragg diffraction. If the source BECwere stationary, atoms
would gain a kinetic energy 2g� as they roll-off the mean-
field potential. In our system however, the potential also
evolves in time and goes to zero in the XY plane on a time
scale corresponding to the time for the two condensates to
separate (�70 �s). The rapid vanishing of the potential on
the equatorial plane has a very different effect on scattered
atoms moving in the X and Y directions. Atoms moving
along Y, the small dimension of the trap, escape the con-
densate overlap region on a timescale of �40 �s, faster
than the condensates can separate. As a result, these atoms
are accelerated by a steep potential gradient and regain part
of the energy 2g� (part—because the potential itself is
reduced during the separation). On the other hand, atoms
moving along X, the long axis of the trap, do not escape
before the condensates separate and thus experience much
less acceleration. Accordingly the observed momentum
along the X direction is smaller than along Y, and much
closer to the shifted value predicted by Eq. (1).

To describe this experiment quantitatively we perform
first-principles positive-P simulations similar to those in
Refs. [17,20]. Here, the multimode dynamics of the atomic

field operators �̂ðx; tÞ and �̂yðx; tÞ for the mx ¼ 0 state is
fully modeled by two independent complex c fields,

�ðx; tÞ and ~�ðx; tÞ, satisfying the Îto stochastic differential
equations:

i@@t�ðx; tÞ ¼ AGPð�; ~�Þ�þ ffiffiffiffiffiffiffi

i@g
p

��1ðx; tÞ;
�i@@t ~�ðx; tÞ ¼ AGPð�; ~�Þ ~�þ ffiffiffiffiffiffiffiffiffiffiffiffi�i@g

p

~��2ðx; tÞ:
(2)

Here, AGPð�; ~�Þ ¼ �@
2r2=ð2mÞ þ g ~�� is a determi-

nistic part similar to the mean-field Gross-Pitaevskii (GP)
equation, �jðx; tÞ (j ¼ 1, 2) are real independent noise

sources with zero mean and correlations

h�jðx; tÞ�kðx0; t0Þi ¼ �jk�
ð3Þðx� x0Þ�ðt� t0Þ, while g ¼

4�@2a=m uses a ¼ 5:3 nm [3] for the mx ¼ 0 atoms.
The initial condition for the outcoupled BEC in the

mx ¼ 0 state (assuming perfect outcoupling for simplicity)
is a coherent state with the same density profile �ðxÞ as the
trapped BEC in the mx ¼ 1 state, with a ¼ 7:51 nm [27],
N0 ¼ 105 atoms. Modulating this with a standing wave
imparts initial momenta �k0 in the Z direction,

�ðx; 0Þ ¼ h�̂ðx; 0Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðxÞ=2
q

ðeik0Z þ e�ik0ZÞ; (3)

and models the Bragg pulse that splits the BEC into two
equal halves described in the center-of-mass frame. The
initial density �ðxÞ is obtained as the ground state solution
to the GP equation in the trap, and ~�ðx; 0Þ ¼ �ðx; 0Þ�. The
results of this simulation are shown in Fig. 2(b) and 2(c) for
t ¼ 70 �s at which time the condensates have fully sepa-
rated and the collision is over. The result of the simulation
is in reasonable agreement with the experiment. The re-
maining discrepancy could be because the experiment,
unlike the simulation, averages over a broad distribution
of initial atom numbers. Since large condensates scatter
more atoms, these events have more statistical weight and
bias the data towards larger modulations.
In order to confirm the qualitative mean-field mecha-

nisms described above, we also perform an analysis of the
collision dynamics using a time-adaptive Bogoliubov ap-
proach [28], in which the atomic field operator is split into

the mean-field (c 0) and fluctuating components, �̂ðx; tÞ ¼
c 0ðx; tÞ þ �̂ðx; tÞ. The coherent BEC wave function
c 0ðx; tÞ evolves according to the standard time-dependent
GP equation, with the initial condition given by Eq. (3).

The fluctuating component �̂ðx; tÞ describes incoherent
scattered atoms, and is initially in the vacuum state. In

the Bogoliubov approach, �̂ evolves as

i@@t�̂ðx; tÞ ¼ H 0ðx; tÞ�̂þ Gðx; tÞ�̂y: (4)

Here, H 0ðx; tÞ ¼ �@
2r2=ð2mÞ þ 2gjc 0ðx; tÞj2 contains

the kinetic energy and the mean-field potential energy
2gjc 0ðx; tÞj2 for scattered atoms. The effective coupling
Gðx; tÞ ¼ gc 0ðx; tÞ2 causes spontaneous pair production

of scattered atoms. The dynamics of the field �̂ is then
formulated using the positive-P representation [28], lead-
ing to the (stochastic field) evolution equations

i@@t�ðx; tÞ ¼ H 0�þ G ~�þ
ffiffiffiffiffiffi

iG
q

�1ðx; tÞ;
�i@@t ~�ðx; tÞ ¼ H 0

~�þ G��þ
ffiffiffiffiffiffiffiffiffiffiffiffi

�iG�
q

�2ðx; tÞ;
(5)

which, unlike the full calculation (2), are stable in time
because the noise is nonmultiplicative. This method takes

PRL 104, 150402 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

16 APRIL 2010

150402-3



into account the temporal evolution and spatial separation
of the two condensates; the stochastic formulation of the

evolution of the field �̂ðx; tÞ makes explicit diagonaliza-
tions on the (enormous) Hilbert space unnecessary. As
condensate depletion is �1:5% here, the stochastic
Bogoliubov results are in excellent agreement with the
positive-P simulations, as seen in Fig. 3.

Figure 3 also shows simulations performed with con-
trolled changes applied to the system. The green (�) points
use a spherical initial condensate and show no anisotropy
in the scattering sphere, unlike the black (h) squares for
the anisotropic case. The blue (v) points have no mean-
field potential, confirming that this potential is essential for
both the radius shift and the ellipticity.

The ability to detect three dimensional momentum vec-
tors of individual atoms allows the identification of small,
previously unseen anomalies in the scattering ‘‘sphere’’
resulting from a simple collision between two condensates.
First-principles simulations reproduce these small anoma-
lies and help us to identify the important physical pro-
cesses. An important application of pair production is the
study and exploitation of quantum correlations between the
pairs, for example, via Bell and EPR type experiments
[29,30]. A matter-wave analogue of the optical EPR ex-
periment with parametric down-conversion [30] has been
discussed in Ref. [22] in the context of dissociation of a
BEC of molecular dimers, which produces atom-atom
correlations similar to four-wave mixing. In addition to
the kinematic effects we report here, mean-field effects
will also affect the phases of the associated two-particle
wave functions. Future work must carefully evaluate the
effects of such (anisotropic and possibly fluctuating) phase

shifts on observables like the contrast of one- and two-
particle interference fringes.
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FIG. 3 (color online). Predictions for the peak radius of the
scattering halo as in Fig. 2(c), after the end of the collision
(72 �s), with various controlled changes. Red-d: full positive-P
calculation, Eq. (2) [same as in Fig. 2(c)]; Black-h: anisotropic
Bogoliubov calculation, Eq. (5); Blue-v: anisotropic
Bogoliubov, but with mean-field potentials / gjc 0j2 removed
from Eq. (5) and from the GP equation for c 0ðx; tÞ; Green-�:
full Bogoliubov, but with spherical BECs and unchanged peak
density �ð0Þ (200 �s).

PRL 104, 150402 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

16 APRIL 2010

150402-4

http://dx.doi.org/10.1103/PhysRevLett.94.110401
http://dx.doi.org/10.1103/PhysRevLett.99.150405
http://dx.doi.org/10.1103/PhysRevLett.86.3180
http://dx.doi.org/10.1103/PhysRevLett.86.3180
http://dx.doi.org/10.1103/PhysRevA.66.031602
http://dx.doi.org/10.1103/PhysRevA.66.031602
http://dx.doi.org/10.1103/PhysRevA.74.033620
http://dx.doi.org/10.1038/18395
http://dx.doi.org/10.1103/PhysRevLett.89.020401
http://dx.doi.org/10.1103/PhysRevLett.89.020401
http://dx.doi.org/10.1103/PhysRevLett.90.030403
http://dx.doi.org/10.1103/PhysRevLett.90.030403
http://dx.doi.org/10.1103/PhysRevA.70.033615
http://dx.doi.org/10.1103/PhysRevLett.85.3987
http://dx.doi.org/10.1103/PhysRevLett.85.3991
http://dx.doi.org/10.1103/PhysRevLett.84.5462
http://dx.doi.org/10.1103/PhysRevA.65.063605
http://dx.doi.org/10.1103/PhysRevA.65.063605
http://dx.doi.org/10.1103/PhysRevLett.94.200401
http://dx.doi.org/10.1103/PhysRevLett.94.040401
http://dx.doi.org/10.1103/PhysRevLett.94.040401
http://dx.doi.org/10.1103/PhysRevLett.98.120402
http://dx.doi.org/10.1103/PhysRevLett.98.120402
http://dx.doi.org/10.1103/PhysRevA.77.033601
http://dx.doi.org/10.1103/PhysRevA.78.053605
http://dx.doi.org/10.1088/1367-2630/10/4/045021
http://dx.doi.org/10.1103/PhysRevA.79.021606
http://dx.doi.org/10.1103/PhysRevA.79.021606
http://dx.doi.org/10.1103/PhysRevLett.95.150405
http://dx.doi.org/10.1103/PhysRevA.79.043634
http://dx.doi.org/10.1103/PhysRevA.79.043634
http://dx.doi.org/10.1103/PhysRevA.55.3204
http://dx.doi.org/10.1103/PhysRevLett.85.2040
http://dx.doi.org/10.1103/PhysRevLett.96.023203
http://dx.doi.org/10.1103/PhysRevLett.64.2495
http://dx.doi.org/10.1103/PhysRevLett.64.2495
http://dx.doi.org/10.1103/PhysRevLett.68.3663

