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Genetically identical cells under the same environmental conditions can show strong variations in

protein copy numbers due to inherently stochastic events in individual cells. We here develop a theoretical

framework to address how variations in enzyme abundance affect the collective kinetics of metabolic

reactions observed within a population of cells. Kinetic parameters measured at the cell population level

are shown to be systematically deviated from those of single cells, even within populations of homoge-

neous parameters. Because of these considerations, Michaelis-Menten kinetics can even be inappropriate

to apply at the population level. Our findings elucidate a novel origin of discrepancy between in vivo and

in vitro kinetics, and offer potential utility for analysis of single-cell metabolomic data.
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Noisy or stochastic molecular events are plentiful in the
life of a cell. In the past several years, extensive experi-
mental and theoretical efforts have been devoted to ana-
lyzing stochastic processes in gene and protein expression,
at both the transcriptional and translational levels [1]. One
consequence of stochastic gene expression is that the num-
ber of molecules of a given protein can vary substantially
from cell to cell, even within genetically identical popula-
tions [2,3]. Such stochastic gene expression has received
considerable attention in relation to cellular regulation,
phenotypic diversity, and disease [1–4].

Kinetic modeling of metabolism aims at achieving a
quantitative description of biochemical reactions to gen-
erate mass and energy required for cell survival. Since
there are rarely available techniques to detect metabolites
inside a single cell [5], most kinetic models for intracel-
lular metabolism have been built on experimental data
obtained from cell populations. These models, however,
would be valid when behavior of individual cells is very
similar to the average behavior of the population.
Significant variation of enzyme abundance between cells
might challenge this traditional approach, and here we
investigate how single-cell variation affects the kinetics
of metabolic reactions appearing at the population level.

The flux of any given reaction (�) can be expressed as a
function of the molecular concentrations and the ki-
netic constants associated with the reaction: � ¼
fðE; fS�g; fKigÞ, where E stands for the concentration of

enzyme, S� for the concentration of the �th metabolite par-

ticipating in or allosterically regulating the reaction, andKi

for the ith kinetic constant in the reaction. For example,
if a single-substrate reaction follows the Michaelis-
Menten (MM) kinetics, then � ¼ fðE; S; fK0; KMgÞ ¼
K0ES=ðKM þ SÞ. Usually, experiments measure concen-
trations or fluxes averaged over a cell population, as ap-
pears below.

h�ziz ¼ hfðEz; fS�zg; fKigÞiz
¼ fðhEziz; fhS�zizg; fKigÞ � ð1þ �Þ; (1)

where we index each cell with z such that �z is the reaction
flux inside cell z, and h� � �iz averages a value over a cell
population. The last equality gives the definition of � to be
equal to zero if molecules are uniformly distributed over
the population. For clarity of analysis, here we only con-
sider cellular variability of molecular concentrations but
not of kinetic parameters [6] and cell volumes; in Eq. (1),
there is no z dependency of Ki and no weighting of cell
volumes for the averages. Although this analysis can be
extended straightforwardly for the factors excluded here,
our work demonstrates that experimentally well-
established heterogeneity in single-cell enzyme abundance
itself [3,7] gives rise to inevitable and definite effects on
the kinetic properties of metabolic reactions. In the follow-
ing, we consider the steady states of reactions under a
given enzyme distribution, as the typical time scale of
reaction rates is much shorter (�10�3 s) than that of en-
zyme concentration changes (>102 s) [8].
Applying the series expansion, we can write � as
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where the higher-order terms have been omitted. f0 �
fðhEziz; fhS�zizg; fKigÞ, f � fðE; fS�g; fKigÞ, �Ez �
Ez � hEziz, �S�z � S�z � hS�ziz, and j0 is for derivative

around E ¼ hEziz, S� ¼ hS�ziz. Note that (i) if f is a

simple linear function of molecular concentrations, � van-
ishes, and (ii) variability of the concentrations across cells
explicitly contributes to �. In other words, inherent non-
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linearity in reaction kinetics and significant cellular varia-
tion in molecular levels manifest the difference between
h�ziz and fðhEziz; fhS�zizg; fKigÞ. Hence, kinetic constants

calculated from a population do not necessarily coincide
with fKig at a single-cell level, as will be addressed in
detail.

Suppose that h�ziz, hEziz, fhS�zizg are experimentally

measured to achieve kinetic constants f ~Kig fitting
fðhEziz; fhS�zizg; f ~KigÞ to h�ziz, for example, by minimizing

the error � ¼ jðfðhEziz; fhS�zizg; f ~KigÞ � h�zizÞ=h�zizj. This
is the typical approach. If more than one experimental data
set are available, f ~Kig may instead be obtained by mini-
mizing

P
r�

2
r , where subscript r represents the rth experi-

ment. Combined with Eq. (1), this procedure results in the
following formula for f ~Kig at the lowest-order approxima-
tion:

�K � A�1u; (3)

where �K and u are the vectors whose elements are

�Ki ¼ ~Ki � Ki; ui ¼
X
r

�r

f0r

@f

@Ki

��������0r
;

respectively, and A�1 is the inverse matrix of A with
elements

Aij ¼
X
r

1

f20r

@f

@Ki

��������0r

@f

@Kj

��������0r
:

It should be noticed that Eq. (3) gives a degree of discrep-
ancy between kinetic constants at a population level f ~Kig
and those at a single-cell level fKig, as a function of a
degree of cellular heterogeneity in Eq. (2).

Taking into account a single-substrate reaction governed
by the MM kinetics [f ¼ K0ES=ðKM þ SÞ], it is straight-
forward to get ~K0 and ~KM from Eq. (3) if both come out of
the same population data:

�K0
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(4)

where covrðxr; yrÞ � hxryrir � hxrirhyrir, varrðxrÞ �
hx2rir � hxri2r . From Eq. (4), one can further prove the
following relation:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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q ; (5)

which shows that the degree of deviations in kinetic pa-
rameters is essentially determined by h�rir, as the right side
ranges from jh�rirj=

ffiffiffi
2

p
to jh�rirj. On the other hand, if KM

is known at the single-cell level, one might calculate only
~K0 from experimental data, but not ~KM. In this case, the
following simplified relation from Eq. (3) holds:

�K0

K0

� h�rir: (6)

Since �rs consistently include the negative-sign terms (as
shown below), they would not be simply canceled out by
each other under averaging, thereby allowing for signifi-
cant nonzero h�rir in Eqs. (5) and (6). For simplicity of
analysis, we will concentrate upon cases of Eq. (6) out of
single experiments. Note that Sz ¼ KM�z=ðK0Ez � �zÞ;
thus, �Sz in Eq. (2) can be substituted for by �Ez and
��z � �z � h�ziz to give

� � �
�
1þ hSziz

KM

� hð�EzÞ2iz
hEzi2z

� hSziz
KM

� hð��zÞ2iz
h�zi2z

þ
�
1þ 2

hSziz
KM

� h�Ez��ziz
hEzizh�ziz : (7)

As long as there exists variation in enzyme concentration,
the first term on the right side of Eq. (7) has a nonzero
magnitude, always greater than hð�EzÞ2iz=hEzi2z of which
experimental values are recently available for the yeast
Saccharomyces cerevisiae [7]. Let �A be this first term,
and we can estimate � to be �A if hð��zÞ2iz is sufficiently
small. Without the lowest-order approximation from
Eq. (2), we can also get � from the exact formula by setting
hð��zÞ2iz ¼ 0, provided that the enzyme concentration
follows the log-normal (��L) or normal (��N) distribu-
tion [2,3]. Such �LðNÞ satisfies the following equality:

hSziz
KM

¼
Z 1

1þ�

P̂LðNÞðxÞ
x� 1

dx; (8)

where P̂LðNÞðxÞ ¼ ðh�ziz=K0ÞPLðNÞðEÞ, x ¼ ðK0=h�zizÞE,
h�ziz ¼ fK0hEzizhSziz=ðKM þ hSzizÞgð1þ �LðNÞÞ, and

PLðNÞðEÞ is the probability distribution of enzyme concen-

tration E almost following the log-normal (normal) distri-
bution. Because PLðNÞðEÞ is approximated as the log-

normal (normal) distribution, P̂LðNÞðxÞ can be approxi-

mated as the same, with hxi ¼ ð1þ KM=hSzizÞ=ð1þ
�LðNÞÞ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð�xÞ2ip
=hxi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�EzÞ2iz

q
=hEziz, where�x �

x� hxi. � > 0 is chosen small enough to satisfyR
1þ�
0ð�1Þ P̂LðNÞðxÞdx � 1. Although �LðNÞ can be accurate

for the particular forms of enzyme distribution following
the log-normal (normal) distribution and �A is just an
estimation, �A is potentially useful as can be applied
without knowing a specific functional form of enzyme
distribution.
We now turn our attention to the empirical values of �A,

�L, and �N . Table I shows results for several irreversible
reactions, which follow MM kinetics and have the neces-
sary experimental data for calculating �A, �L, and �N for
S. cerevisiae. It is then observed that �A, �L, and �N easily
reach�Oð�10�1Þ, thereby lowering ~K0 by several tens of
percent of K0 according to Eq. (6). Furthermore, a striking
range of the metabolite concentration changes (�100-fold
increased or decreased) against different environmental
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conditions [11] can overweight hSziz=KM in Eq. (7) for
certain conditions, which could drastically increase the
magnitude of �A as well as of �.

When can �A be used to safely infer �? In a directed
linear pathway as shown in Fig. 1(a), each reaction takes as
a substrate the product of the preceding reaction, and
frequently involves an additional cosubstrate (such as a
water molecule) that is abundant in the cell and whose
variations can be neglected. For any given reaction in such
a pathway, �z at a steady state is entirely determined by the
influx from the upstream region independently of the given
reaction itself (��z=�Ez ¼ 0), if there is absent any regu-
latory connection between the reaction and the upstream
region. Thus the last term on the right side of Eq. (7)
vanishes because of decoupled �z and Ez, and a negative
sign of the remaining second term even weights the effect
of �A on � because �A also has a negative sign. Therefore,
the lower bound of the magnitude of � in Eq. (7) can be
predicted by �A.

If we consider more elaborate pathways than simple
linear pathways, the last term on the right side of Eq. (7)
may not simply vanish, and could play a role in determin-
ing �. Specifically, if Ez and �z are positively correlated,
the last term will weaken the effect of �A on �, and if they
are negatively correlated, will weight the effect in an
opposite way. Here we focus on the former case, as exem-
plified in Figs. 1(b) and 1(c). Figure 1(b) depicts a
negative-feedback case where the substrate of a given
reaction inhibits the first reaction in the pathway or the
transport of its precursor. In such a way, flux is reduced
when the substrate is accumulated, as characterized by
�z ¼ cz=f1þ ðSz=KIÞhg where cz is the maximal influx,
KI is the dissociation constant of the inhibiting interaction,
and h is a Hill coefficient. Substituting this into Eq. (7)
gives rise to

� � �ð1� �Þ
�
1þ hSziz

KM

ð1� �Þ
� hð�EzÞ2iz

hEzi2z
þ � � � ; (9)

where �¼½1þf1þðKI=hSzizÞhgh�1ð1þhSziz=KMÞ�1��1

[12]. Compared with Eq. (7), the contribution of the term
with hð�EzÞ2iz=hEzi2z is relatively small, and even ap-
proaches zero at a strong inhibition limit (hSziz 	 KI, h 	
1). This effect originates from the presence of a positive
correlation between Ez and �z, as anticipated above. A
similar effect can also be found from the case of Fig. 1(c).
In branching pathways, such as depicted in Fig. 1(c),
different enzymes can bind to the common substrate, and

each catalyzes a first reaction in a different pathway. More
specifically, a metabolite Sz with influx cz is converted to a
product with rate �I

z ¼ KI
oE

I
zSz=ðKI

M þ SzÞ or to the other
product with rate �II

z ¼ KII
o E

II
z Sz=ðKII

M þ SzÞ. Equation (7)
then leads to,
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(10)

As expected, the contribution of the term with
hð�EI

zÞ2iz=hEI
zi2z is smaller than that with hð�EzÞ2iz=hEzi2z

in Eq. (7), and even approaches zero when h�I
ziz � h�II

z iz.
Interestingly, the second term on the right-side of Eq. (10)
explicitly comes from a correlation between EI

z and EII
z . It

should be noted that such a correlation between different
enzymes does not only affect �s for specific branching
pathways, but also does so for many general situations,
because the second and third terms on the right side of
Eq. (7) contain a variation of flux, and flux may change in
response to the activity of enzymes or proteins other than
only that of an enzyme of interest. Hence, a correlation
between different enzymes as well as a variation of each
enzyme can play an important role to distinguish a gap
between single-cell-level and population-level kinetic
constants.
It is also interesting to note that in a limited range our

results may be experimentally accessible without measur-
ing metabolites inside a single cell. Briefly, let us consider
an enzyme taking as a substrate a molecule which has just
passed from the extracellular medium along a membrane
transporter like a permease. If �z / Tz where Tz denotes
transporter level, the second and third terms on the right
side of Eq. (7) can be rewritten as,

� hSziz
KM

� hð�TzÞ2iz
hTzi2z

þ
�
1þ 2

hSziz
KM

� h�Ez�Tziz
hEzizhTziz :

Therefore, the right side of Eq. (7) includes only the
molecular levels measurable by currently available experi-
mental techniques, and can be used to estimate enzyme
kinetic parameters for single cells. A more complete de-
scription of this idea can be found in the accompanying
supplemental material [13].

TABLE I. Characteristics of metabolic reactions and their �A, �L, and �N when � ¼ 10�6. Marked * if a water molecule acts as a

cosubstrate. Data for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�EzÞ2iz

q
=hEziz from Ref. [7], for KM from Ref. [9], and for hSziz from Ref. [10].

Enzyme Substrate Product
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�EzÞ2iz

q
=hEziz KM (mM) hSziz (mM) �A �L �N

YEL042W* GDP GMP, phosphate 0.235 0.1 0.39 �0:271 �0:260 �0:278
YJL005W ATP cAMP, diphosphate 0.267 1.6 2.52 �0:183 �0:237 �0:322
YPL111W* Arginine Ornithine, urea 0.241 15.7 50 �0:244 �0:261 �0:291

PRL 104, 148103 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
9 APRIL 2010

148103-3



Even in cases where the primary interest is the kinetics
at a population level rather than at a single-cell level, does
it matter to consider the effect of cellular variability ana-
lyzed so far? Since a specific value of � can be changed
responding to different conditions rather than kept con-
stant, f ~Kig will be changed also. This fact indicates that
even a functional form of reaction kinetics at a population
level will be distorted from its basal form. For example, the
experiments with S. cerevisiae [3] suggest the relationship
hð�EzÞ2iz=hEzi2z � C1=hEziz þ C2 where C1 and C2 are
constants (C1 � 1200 molecules=cell). By assuming that
hð��zÞ2iz is sufficiently small, Eqs. (1) and (7) lead to

h�ziz � K0hEzizhSziz
KM

�
1

1þ hSziz=KM

� C1

hEziz � C2

�
:

(11)

This result clearly violates the original form of the MM
equation, since the MM equation is modified with the
introduction of the second and third terms in ð� � �Þ of
Eq. (11). Although ‘‘effective’’ values of kinetic parame-
ters fitted to the original MM equation might work for
narrow ranges of hEziz and hSziz that are used for the fitting,
it will still be unavoidable to witness the breakdown of the
MM kinetics like Eq. (11) in the face of significant changes
of hEziz and hSziz [14] conveyed by severe intra- or ex-
tracellular condition changes.

So far, we have used the MM equation for
fðEz; fS�zg; fKigÞ assuming negligible molecular fluctua-

tions under given Ez and �z. A recent study has suggested
that an active transport mechanism of substrates as well as
the presence of competitive enzyme inhibitors may mani-
fest the effect of such fluctuations [15], and this effect can
be incorporated in our study through the use of the corre-
sponding fðEz; fS�zg; fKigÞ instead of the MM equation.

In this Letter, we demonstrate that reaction kinetics of a
cell population can be systematically deviated from that of
single cells by inevitable and significant variations in
enzyme abundance. This result would not be only re-
stricted to the case of MM kinetics focused on here;

more sophisticated kinetic equations than theMM equation
would also face such deviations. Our findings indicate that
widely spread discrepancies between in vivo and in vitro
kinetics might be attributed at least in part to cellular
variability, because previously known in vivo kinetic pa-
rameters have been mostly obtained from population-level
experiments. We expect that the ultimate development of
single-cell metabolomic analysis will greatly facilitate a
precise determination of biochemical kinetics. In particu-
lar, such single-cell-level analysis can be applied judi-
ciously to key parts of biochemical pathways of which
operation is highly sensitive to their kinetic parameters.
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FIG. 1. Various types of metabolic pathways. Squares for
metabolites and circles for reactions. Fluxes run into arrowed
directions. (a) Linear, (b) linear with feedback inhibition de-
picted by a dashed line, (c) branching pathways.
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