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Density functional theory was used to study structural and dynamical changes related to the magneto-

structural phase transition in MnAs. The soft mode inducing the transition from the high-symmetry

hexagonal to the low-symmetry orthorhombic phase was revealed. A giant coupling between the soft

mode and magnetic moments was found and its crucial role in the magnetostructural transition was

established. The estimated phonon contribution to the total entropy change has the opposite sign to the

magnetic entropy change.
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In recent years a well-known transition metal compound
MnAs has attracted renewed attention, due to a giant
magnetocaloric effect (MCE) reported by Wada and
Tanabe [1]. Notably, MnAs shows the MCE properties
comparable to those of the rare-earth compound
Gd5ðSi2Ge2Þ, in which the giant MCE was for the first
time described by Pecharsky and Gschneider [2]. Under
ambient pressure the maximum entropy change in MnAs
can achieve �S ¼ S� � S� ¼ �30 J=ðKkgÞ [1,3] for

magnetic field change �H ¼ 5 T and �20 J=ðKkgÞ for
�H ¼ 2 T [4]. Such remarkable solid state behavior may
enable magnetic refrigeration applications at room tem-
perature. The idea is based on the magnetocaloric phe-
nomenon related to reversible processes of heating up and
cooling down magnetic materials by inserting into and
withdrawing from an external magnetic field repeatedly
in adiabatic conditions. In fact, MnAs is one of the most
promising magnetic materials for refrigeration near ambi-
ent temperature, due to a strong magnetostructural transi-
tion occurring at Tc � 315 K, resulting from a particular
interplay between magnetic and lattice degrees of freedom.

The hexagonal ferromagnetic (FM) �-MnAs (NiAs-
type, P63=mmc) undergoes a first-order phase transition
to the orthorhombic paramagnetic (PM) �-MnAs (MnP-
type, Pnma) phase at Tc [5]. The first-order magnetic
phase transition (� ! �) is accompanied by a large vol-
ume contraction (�2%), related to the hexagonal-
orthorhombic structural transition. At higher temperature
Tt � 393 K, the compound returns to the hexagonal NiAs-
type structure (�-MnAs) with P63=mmc space group,
through a second-order phase transition, maintaining, how-
ever, a PM state.

A complex phase diagram of MnAs indicates quite
unique coupling between magnetism and the crystal struc-
ture. The first phenomenological model, proposed by Bean
and Rodbell [6], assumed explicit dependence of the criti-
cal temperature Tc on volume. This model successfully
explains the first-order character of the � ! � phase tran-
sition. The phase diagram was derived from a more ad-

vanced model, with two competing order parameters,
magnetization and lattice distortion, developed within the
Landau theory by Pytlik and Zieba [7]. Earlier, on the basis
of the electron band structure, Goodenough and Kafalas [8]
had proposed the mechanism combining the lattice defor-
mation with transition from the high-spin to the low-spin
state. The low-spin state (S ¼ 0), however, has not been
detected in the neutron scattering experiment [9], and the
microscopic origin of the strong magnetoelastic coupling
still needs further studies.
The crystal structure and FM moments in the � phase,

obtained by density functional theory (DFT), agree very
well with the experimental data [10]. However, a magnetic
arrangement in the PM orthorhombic phase has not yet
been fully understood. The effect of the orthorhombic
distortion on the magnetic ground state was studied by
mapping of the DFT total energy onto the Heisenberg
model [11]. It has been found that for the critical distortion,
the FM state changes into the antiferromagnetic (AFM)
state. A similar result has been obtained for the � phase,
studied as a function of magnetic ordering [12]. Although
the AFM state has not been observed in the orthorhombic
phase, these studies demonstrate a strong coupling between
the crystal structure and magnetic interactions in MnAs.
The lattice dynamics in MnAs have not been investi-

gated so far, but some measurements, including the elastic
modulus and sound attenuation, indicate that phonons
participate in the � ! � phase transition [13]. The anoma-
lous behavior of the Debye-Waller factor close to the phase
transition at Tc suggests the critical lowering of phonon
frequencies [14]. A soft-mode mechanism of the structural
transition has been suggested as consistent with the ob-
served magnetic origin of the entropy change [3].
In this Letter, we present, for the first time, the phonon

dispersion relations obtained for the � phase. We study the
changes of the phonon spectrum induced by magnetic
interactions and external pressure invoking volume
changes. We focus on a giant spin-phonon coupling, which
drives the first-order magnetostructural transition in MnAs.
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To our best knowledge, such strong magnetic-phonon in-
teraction is unique, and has not been observed in other
materials.

We have performed first-principles calculations based
on the spin-polarized DFT as implemented in the VASP

package [15]. In present calculations, the Blöchl full po-
tential projector augmented-wave method [16], within the
generalized gradient approximation [17], has been em-
ployed. The Brillouin-zone integration has been carried
out with a 4� 4� 4 k-point mesh generated with the
Monkhorst-Pack scheme [18]. The plane-wave basis set
was limited by a kinetic energy cutoff at 320 eV. For
structural and phonon calculations we have used the 2�
2� 1 supercell containing 16 atoms. As a standard proce-
dure we checked the convergence of calculations with
kinetic energy cutoff and the density of k-point mesh. In
addition, a larger supercell with 72 atoms has been used for
checking the convergence of the lattice parameters and
phonon frequencies with the supercell size. Phonon dis-
persion relations have been calculated using the direct
method [19] as implemented in the PHONON program
[20]. The force constants and dynamical matrix have
been obtained from the Hellmann-Feynman forces calcu-
lated with small individual displacements of nonequivalent
atoms.

The crystal structure of MnAs has been optimized as-
suming the FM ordering on Mn atoms. For the hexagonal

structure, we have obtained the lattice parameters a ¼
3:666 �A and c ¼ 5:508 �A in close agreement with the

experimental data taken at T ¼ 110 K: aexpt ¼ 3:733 �A

and cexpt ¼ 5:677 �A. Comparing to the experimental mag-

netic moment on Mn atoms (3:4�B), we have obtained a
smaller value 3:05�B for optimized hexagonal structure.
However, for the experimental values of lattice constants
we have found 3:35�B. The optimization in the orthorhom-
bic supercell with the FM ordering of magnetic moments
leads to a very similar structure, which has atomic posi-
tions different by 0.01 Å at the most. The difference of total
energies between both structures is less than 0.6 meV per
atom. The calculations were repeated for a wide range of
pressures from �50 to 20 kb, where negative pressures
(larger volume) correspond to higher temperatures.

The calculated phonon dispersion relations for the hex-
agonal phase along the high-symmetry directions are plot-
ted in Fig. 1. At p ¼ 0, all phonon energies are positive,
which ensures the dynamical stability of the hexagonal
phase in ambient conditions. There is, however, a low-
energy phonon at the M point, whose frequency strongly
depends on pressure. For positive pressures, the energy of
the soft mode rapidly decreases and goes to zero around
p ¼ 25 kb. Consequently, negative pressure increases the
frequency of the soft mode. This soft mode is responsible
for the structural transition between the hexagonal and
orthorhombic phases. The calculated critical pressure for
the � ! � transition cannot be compared with the experi-
mental value at low temperature (� 3:6 kb), since the

theoretical value was obtained assuming the continuous
change of volume with the unchanged FM order. In fact,
crystal volume collapses due to the magnetic transition
and—in consequence of the coupling with the soft
mode—it leads to the first-order phase transition with a
lower critical pressure. The soft-mode frequencies, mag-
netic moments, and crystal volumes for all pressures used
in the calculations are presented in Table I.
A symmetry analysis based on the Stokes and Hatch

tables [21] shows that the soft mode observed in the
hexagonal structure reduces crystal symmetry to the ortho-
rhombic space group (Pnma) according to the diagram

P63=mmc ! ½Mþ
2 ;k ¼ ð0:5; 0; 0Þ� ! Pnma: (1)

A change of the Mn-Mn distance induced by the soft
mode originates from a giant spin-phonon coupling present
in MnAs. To study this coupling, we have calculated
dispersion curves as a function of the magnetic moment
on Mn. For the nonmagnetic state (m ¼ 0), the phonon
spectra obtained for both phases show many imaginary
modes which make the crystal unstable. This demonstrates
that magnetic interactions are crucial to stabilize the crys-
tal lattice of MnAs. The above finding also applies to the
PM state, where the crystal structure is stabilized by the
fluctuating magnetic moments.
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FIG. 1 (color online). Phonon dispersion relations for hexago-
nal phase calculated under several pressures. For values of
optimized volume and soft-mode frequencies, see Table I.

TABLE I. Volume, magnetic moment, and soft-mode fre-
quency versus pressure, calculated for MnAs hexagonal phase.

p (kb) V ( �A3) �V=V0 !soft (THz) m (�B)

�50 282.04 1.099 2.280 3.47

�20 266.71 1.040 1.756 3.24

�10 260.53 1.016 1.333 3.12

0 256.52 1.000 1.133 3.05

10 253.15 0.987 0.760 2.99

20 249.85 0.974 0.322 2.93
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The phonon dispersion curves in the � phase, plotted for
different values and ordering of the magnetic moment, are
shown in Fig. 2. Dramatically reduced magnitudes of m
(far below experimental values) have been selected inten-
tionally to underline the strength of the spin-phonon cou-
pling. For the reduced moment, the same mode at the M
point softens and goes to zero around m� 2:8�B. This
unusual result demonstrates a very strong coupling be-
tween the soft phonon mode and magnetization. Because
of this coupling the increased magnetic moment stabilizes
the hexagonal phase, while the decreased moment induces
the orthorhombic distortion. In a first-order phase transi-
tion, the phonon softening is not complete, so such a strong
decrease of magnetic moments has not been observed. To
estimate the strength of the spin-phonon coupling �, we
have fitted dependence of the soft-mode frequency on spin
correlations to the formula

! ¼ !0 þ �hSi � Sji; (2)

implemented previously to spinels [22]. Assuming for the
FM configuration hSi � Sji ¼ S2 ¼ 1

4m
2, we have obtained

� ¼ 4:04 THz, which is much larger than values reported
for strongly frustrated magnets [23]. It confirms the ex-
tremely strong character of this coupling. Fitted !0 has the
negative sign and well corresponds to the value of soft-
mode frequency calculated for the nonmagnetic system.

Lowering of the magnetic moment and phonon soften-
ing are associated with shortening of the Mn–Mn distance
and decrease of volume, as observed in the � ! � tran-
sition. It appears that the coupling between magnetization
and crystal volume, due to the soft-mode driven structure
transformation, plays a key role in the magnetostructural
transition of MnAs. Additionally, a strong dependence of
the structural stability on the Mn magnetic moment ex-
plains, in a similar way, the effect of the external magnetic
field on the phase transition (i.e., shift of Tc towards higher
temperature).

The scheme of atom displacements obtained from the
polarization vector of the soft mode is presented in the inset
of Fig. 3. Mn atoms move primarily in the hexagonal a-b
plane in one direction, while As atoms move along the c
direction. These atomic displacements are consistent with
the orthorhombic distortion observed in the diffraction
measurements [5]. Moreover, the increase of Mn atoms
displacement (uMn), corresponding to the � phase stabili-
zation, reduces the value of m (see Fig. 3). It suggests that
in the disordered PM state m is about 10% smaller than in
the ordered FM one. Under pressure, the dependence of the
total energy on uMn shows flattening, characteristic for the
system destabilization. Indeed, for p ¼ 20 kb the hexago-
nal phase is close to the transition point and the soft-mode
frequency is only 0.322 THz (see Table I). At this pressure,
the magnetic moment shows even stronger dependence on
the soft-mode amplitude, indicating a larger spin-phonon
coupling close to the phase transition. Average thermal
displacements of Mn atoms, calculated from the whole
phonon spectrum at Tc, are about 0.1 Å. However, taking
flatness of the potential into account, vibration amplitude
of the soft mode can be several times higher.
An interesting question arises: What is the influence of

the local moment ordering on phonons? To investigate it,
we have repeated calculations for two AFM configurations:
with the in-plane and interplane staggered spin orienta-
tions. For p ¼ 0 and p ¼ 20 kb, we have observed volume
contraction and about 7% local magnetic moment reduc-
tion. In the case of the in-plane AFM order, the spin-
phonon coupling [see Eq. (2)] leads to instability at the
M point with the soft-mode frequency about �1:5 THz at
p ¼ 0 (see Fig. 2). This confirms that magnetic disordering
destabilizes hexagonal structure and through the soft mode
induces the first-order phase transition to the orthorhombic
phase.
As discussed previously [3], a large entropy change in

the magnetostructural transition is mainly associated with
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FIG. 2 (color online). Phonon spectra in the hexagonal phase
calculated with fully relaxed 16-atoms supercell for a few fixed
values of magnetic moment on Mn atoms at 0 kb pressure.

FIG. 3 (color online). The Mn magnetic moment and the total
energy of the 16-atoms supercell as a function of the Mn atoms
displacement in the soft mode at the M point of the Brillouin
zone of hexagonal phase.
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the magnetization change. Recently, it was suggested that
phonons can significantly contribute to the entropy change
[24]. Here, we estimate the change in entropy associated
with phonons [25]. In Fig. 4 we present comparison of the
phonon entropy calculated for the hexagonal as well as
orthorhombic phases for two pressures. One pressure cor-
responds to the high-volume hexagonal phase (p ¼ 0) and
the other to the low-volume orthorhombic phase (p ¼
20 kb). The relative change of the volume �V=V0 ¼
0:974 (see Table I) is consistent with the experimental
value (�2%). For both pressures, the hexagonal phase
has slightly lower values of entropy in the whole tempera-
ture range. However, differences between both phases are
almost negligible. The phonon contribution to the entropy
change at the phase transition can be estimated by cal-
culating the difference in entropy obtained for these
two volumes �S ¼ S� � S�. It reads 0:146kB=atom ¼
9:31 J=ðkgKÞ. Comparing to the experimental entropy
change [3], the phonon part is much smaller and has the
opposite sign. In this estimation, we take into account only
the entropy change related to the volume decrease at Tc, so
the influence of magnetization on phonons is only partially
included.

In conclusion, a stable structure of the hexagonal phase
of MnAs, with the lattice parameters and Mn magnetic
moment comparable with the experimental data, was de-
scribed with the first-principles calculations. A soft mode
at the M point, reducing the hexagonal symmetry to the
orthorhombic one, was found. We have revealed that the
soft-mode frequency strongly decreases with lowering of
the Mn magnetic moment. A remarkable decrease of m
with the increased soft-mode amplitude appears to be the
principal reason for stability loss of the hexagonal struc-
ture. Thus, this giant spin-phonon coupling plays a crucial

role in the mechanism of the � ! � phase transition in
MnAs.
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