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Superconductors with px � ipy pairing symmetry are characterized by chiral edge states, but these are

difficult to detect in equilibrium since the resulting magnetic field is screened by the Meissner effect.

Nonequilibrium detection is hindered by the fact that the edge excitations are Majorana fermions, which

cannot transport charge near the Fermi level. Here we show that the boundary between px þ ipy and

px � ipy domains forms a one-way channel for electrical charge. We derive a product rule for the domain

wall conductance, which allows us to cancel the effect of a tunnel barrier between metal electrodes and the

superconductor and provides a unique signature of topological superconductors in the chiral p-wave

symmetry class.
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Chiral edge states are gapless excitations at the boundary
of a two-dimensional system that can propagate in only a
single direction. They appear prominently in the quantum
Hall effect [1,2]: The absence of backscattering in a chiral
edge state explains the robustness of the quantization of the
Hall conductance against disorder. Analogous phenomena
in a superconductor with broken time-reversal symmetry
are known as the spin quantum Hall effect [3–5] and the
thermal quantum Hall effect [6,7], in reference to the
transport of spin and heat along chiral edge states.

Unlike the original (electrical) quantum Hall effect, both
these superconducting analogues have eluded observation,
which is understandable since it is so much more difficult
to measure spin and heat transport than electrical transport.
Proposals to detect chiral edge states in a superconductor
through their equilibrium magnetization are hindered by
screening currents in the bulk, which cancel the magnetic
field (Meissner effect) [8–11].

Here we show that the boundary between domains of
opposite chirality (px � ipy) in a chiral p-wave supercon-

ductor forms a one-way channel for electrical charge, in
much the same way as edge states in the quantum Hall
effect. This is not an immediate consequence of chirality:
Since the charge of excitations in a superconductor is only
conserved modulo the Cooper pair charge of 2e, the ab-
sence of backscattering in a superconducting chiral edge
state does not imply conservation of the electrical current.
Indeed, one chiral edge state within a single domain has
zero conductance due to electron-hole symmetry. We cal-
culate the conductance of the domain wall, measured
between a pair of metal contacts at the two ends (see
Fig. 1), and find that it is nonzero, regardless of the
separation of the contacts.

Our analysis is generally applicable to so-called class-D
topological superconductors [12,13], characterized by the
presence of electron-hole symmetry and the absence of
both time-reversal and spin-rotation symmetry. It can be
applied to the various realizations of chiral p-wave super-

conductors proposed in the literature (strontium ruthenate
[11], superfluids of fermionic cold atoms [14,15], and
ferromagnet-superconductor heterostructures [16,17]).
We start from the Bogoliubov–de Gennes equation,

H0 � EF �
�y �H�

0 þ EF

� �
u
v

� �
¼ E

u
v

� �
; (1)

for coupled electron and hole excitations uðrÞ, vðrÞ at
energy E above the Fermi level EF. The single-particle
Hamiltonian is H0 ¼ ðpþ eAÞ2=2mþU, with p ¼
�i@@=@r the momentum, AðrÞ the vector potential, and
UðrÞ the electrostatic potential. The dynamics is two-
dimensional, so r ¼ ðx; yÞ, p ¼ ðpx; pyÞ. The pair potential
� has the spin-polarized-triplet p-wave form [18]

� ¼ ð2pFÞ�1ð� � pþ p � �Þ; (2)

in terms of a two-component order parameter � ¼
ð�x; �yÞ. The two chiralities px � ipy correspond to �� ¼
�0e

i�ð1;�iÞ, with �0 the excitation gap and � the super-
conducting phase. Since �y ¼ ���, a solution (u, v) of
Eq. (1) at energy E is related to another solution (v�, u�) at
energy �E (electron-hole symmetry). A domain wall
along x ¼ 0, with a phase difference � between the do-
mains, has order parameter [19,20]

�xðxÞ ¼ �0½e�i�=2 cos�ðxÞ þ ei�=2 sin�ðxÞ�; (3a)

�yðxÞ ¼ i�0½e�i�=2 cos�ðxÞ � ei�=2 sin�ðxÞ�; (3b)

The function �ðxÞ increases from 0 to �=2 over a coher-
ence length �0 ¼ @vF=�0 around x ¼ 0.
At energies E below �0 the excitations are chiral edge

states �L and �R circulating in opposite directions in the
two domains [8,21–23]. (See Fig. 1.) At the domain wall
the two states mix, so that an excitation entering the
domain wall in the state �in

L or �in
R can exit in either of

the two states �out
L and �out

R . We first analyze this edge
state scattering problem between contacts NL and NR, and
then introduce the contacts N1 and N2 to the domain wall.
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The edge state excitations have fermionic annihilation
operators �ðEÞ ¼ ð�LðEÞ; �RðEÞÞ, which satisfy the
electron-hole symmetry relation �ðEÞ ¼ �yð�EÞ. At zero
energy one has � ¼ �y, so these are Majorana fermions
[18]. The unitary scattering matrix SðEÞ relates incoming
and outgoing operators, �outðEÞ ¼ SðEÞ�inðEÞ. Electron-
hole symmetry for both �in and �out requires SðEÞ�inðEÞ ¼
�inðEÞSyð�EÞ, hence SðEÞ ¼ S�ð�EÞ. The zero-energy
scattering matrix Sð0Þ � Sdw of the domain wall is there-
fore a real unitary, or orthogonal, matrix. We may parame-
trize it by

Sdw ¼ cosc sinc
ð�1Þpþ1 sinc ð�1Þp cosc

� �
¼ �p

z eic�y ; (4)

in terms of a mixing angle c and a parity index p 2 f0; 1g.
The mixing angle c ¼ kyW is determined by the phase

accumulated by the pair of chiral Majorana modes, as they
propagate with wave number�ky along the domain wall of

length W. The dispersion relation EðkyÞ of the Majorana

modes was calculated in Ref. [22], for a step function order
parameter at x ¼ 0, including also the effect of a tunnel
barrier U ¼ U0�ðxÞ (tunnel probability D, zero magnetic
field). By equating EðkyÞ ¼ 0 and solving for ky we obtain

the mixing angle

c ¼ kFW
ffiffiffiffi
D

p
cosð�=2Þ: (5)

The mixing angle can in principle be measured through
thermal transport between contacts NL and NR, since the
heat current through the domain wall is / sin2c . In what
follows we consider instead a purely electrical measure-

ment of transport along the domain wall, that (as we shall
see) is independent of the degree of mixing of the
Majorana modes (hence independent of the parameters
W, D, and � that characterize the domain wall).
The measurement that we propose consists of the injec-

tion of electrons from contact N1 at voltage V1 (relative to
the superconductor) and the detection at contact N2. We
consider two detection schemes. In the first scheme contact
N2 is kept at the same potential as the superconductor and
measures a current I2, leading to the nonlocal conductance
G12 ¼ I2=V1. In the second scheme contact N2 is a voltage
probe drawing no net current and measuring a voltage V2.
The ratio R12 ¼ V2=I1, with I1 the current entering the
superconductor through contact N1, is the nonlocal resis-
tance. The two nonlocal quantities are related by R12 ¼
G12=G1G2, with Gi ¼ jIi=Vij the contact conductance of
electrode Ni (measured with the other contact grounded).
We take the zero-temperature and zero-voltage limit, so

that we can use the zero-energy scattering matrix to cal-
culate the various conductances. The scattering problem at
contact N1 involves, in addition to the Majorana operators
� ¼ ð�L; �RÞ, the electron and hole annihilation operators
an and bn in mode n ¼ 1; 2; . . . ; N. These are related by

bnðEÞ ¼ ayn ð�EÞ. The even and odd combinations ��
n ,

defined by

�þ
n

��
n

� �
¼ u

an
bn

� �
; u ¼

ffiffiffi
1

2

s
1 1
�i i

� �
; (6)

satisfy the same electron-hole symmetry relation as �L,
�R, and therefore represent Majorana fermions at E ¼ 0.
We denote �n ¼ ð�þ

n ; �
�
n Þ and collect these operators in

the vector � ¼ ð�1;�2; . . .�NÞ. The scattering matrix S1 of
contact N1 relates incoming and outgoing operators,

�

�

 !
out ¼ S1

�
�

� �
in
; S1 ¼ r1 t1

t01 r01

� �
: (7)

Electron-hole symmetry implies that S1 is ð2N þ 2Þ �
ð2N þ 2Þ orthogonal matrix at zero energy. Similarly, the
zero-energy scattering matrix S2 of contact N2 is a ð2N0 þ
2Þ � ð2N0 þ 2Þ orthogonal matrix. (The number of modes
is N, N0 in contacts N1, N2 respectively.)
The 2N0 � 2N transmission matrix

t21 ¼ t02Sdwt1 ¼ t02�
p
z eic�yt1 (8)

from contact N1 to N2 is the product of the 2� 2N sub-
matrix t1 of S1 (transmission from N1 to the domain wall),
the 2� 2 scattering matrix Sdw (transmission along the
domain wall), and the 2N0 � 2 submatrix t02 of S2 (trans-
mission from the domain wall to N2).
The total transmission probability Tee, summed over all

modes, of an electron at contactN1 to an electron at contact
N2 is given by

Tee ¼ 1
4 TrU

yty21Uð1þ �zÞUyt21Uð1þ �zÞ
¼ 1

4 Trt
y
21ð1� �yÞt21ð1��yÞ; (9)

FIG. 1 (color online). Superconducting strip divided by a
domain wall (dashed line, length W) into domains with px �
ipy symmetry. The edge states �L, �R of opposite chirality in

the two domains are indicated by red arrows. These Majorana
modes can carry heat current between contacts NL and NR, but
no electrical current. A normal-metal electrode N1 at voltage V1

injects charge into the domain wall, which is detected as an
electrical current I2 at the other end N2. In an alternative
measurement configuration (indicated in blue), contact N2 mea-
sures a voltage V2 without drawing a current.
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where we have defined the direct sums U ¼ u � u � � � �
u, �i ¼ �i � �i � � � � �i and we have used that u�zu

y ¼
��y. Similarly, the total electron-to-hole transmission

probability The reads

The ¼ 1
4 Trt

y
21ð1þ �yÞt21ð1��yÞ: (10)

(The quantity The describes socalled crossed Andreev
reflection.)

Since I2 ¼ ðe2=hÞV1ðTee � TheÞ, the nonlocal conduc-
tance takes the form

G12 ¼ ðe2=hÞ12 TrtT21�yt21�y: (11)

We have used that ty21 ¼ tT21 and TrtT21�yt21 ¼ 0 (being the

trace of an antisymmetric matrix). The nonlocal resistance
can be written in a similar form upon division by the
contact conductances,

R12 ¼ G12

G1G2

; Gi ¼ ðe2=hÞ 1
2
Trð1��yr

0T
i �yr

0
iÞ:
(12)

We will henceforth set e2=h to unity in most equations.
Substitution of Eq. (8) into Eq. (11) gives the conduc-

tance

G12 ¼ 1
2 TrT 1S

T
dwT 2Sdw; (13)

in terms of the 2� 2 matrices T 1 ¼ t1�yt
T
1 , T 2 ¼

t0T2 �yt
0
2. We now use the identity

TrA1A2 ¼ 1
2ðTrA1�yÞðTrA2�yÞ; (14)

valid for any pair of 2� 2 antisymmetric matrices A1, A2.
Taking A1 ¼ T 1, A2 ¼ STdwT 2Sdw we arrive at

G12 ¼ ð�1Þp	1	2; 	i ¼ 1
2 TrT i�y; (15a)

R12 ¼ ð�1Þp
1
2; 
i ¼ 	i=Gi; (15b)

since TrSTdwT 2Sdw�y ¼ ð�1ÞpTrT 2�y in view of Eq. (4).

Equation (15) expresses the nonlocal conductance and
resistance in terms of the scattering matrices S1, S2 of the
two contacts N1, N2. The scattering matrix Sdw of the
domain wall enters only through the parity index p, and
not through the mixing angle c . That the transferred
charge depends only on a parity index is a generic feature
of a single-mode scattering problem with class D sym-
metry [24–28]. Quite generally, p counts the number
(modulo 2) of zero-energy bound states, which in our
case would be trapped in vortices in the domain wall.

A measurement of the domain wall conductance would
have several characteristic features: Most prominently, the
conductance is zero unless both contacts N1 and N2 are at
the domain wall; if at least one contact is moved away from
the domain wall, the conductance vanishes because a
single Majorana edge mode cannot carry an electrical
current at the Fermi level. This feature would distinguish
chiral p-wave superconductors (symmetry class D) from
chiral d-wave superconductors (symmetry class C), where

the Majorana edge modes come in pairs and can carry a
current. The chirality itself can be detected by interchang-
ing the injecting and detecting contacts: only one choice
can give a nonzero conductance.
To illustrate these features in a model calculation, we

consider the case of two single-mode contacts (N ¼ N0 ¼
1). The superconducting order parameter will be sup-
pressed for energetic reasons when the domain wall ap-
proaches the boundary, so that the contact area can be
modeled by a disordered normal-metal region confined
by superconducting boundaries. Scattering in such an
‘‘Andreev billiard’’ is described statistically by random
contact scattering matrices S1 and S2, drawn independently
with a uniform distribution from the ensemble of 4� 4
orthogonal matrices. In the context of random-matrix
theory, uniformly distributed ensembles of unitary ma-
trices are called ‘‘circular’’, so our ensemble could be
called the ‘‘circular real ensemble’’ (CRE)—to distinguish
it from the usual circular unitary ensemble (CUE) of com-
plex unitary matrices [29].
Using the expression for the uniform measure on the

orthogonal group [27,30], we obtain the distributions of the
parameters 	i and 
i characterizing contact Ni:

Pð	Þ ¼ 1� j	j; Pð
Þ ¼ ð1þ j
jÞ�2; j	j; j
j 	 1:

(16)

The distribution of the nonlocal conductance G12 ¼
ð�1Þp	1	2, plotted in Fig. 2, then follows from

PðG12Þ ¼
Z 1

�1
d	1

Z 1

�1
d	2�ðG12 � 	1	2ÞPð	1ÞPð	2Þ:

The distribution of the nonlocal resistance R12 ¼
ð�1Þp
1
2 follows similarly and as we can see in Fig. 2
it lies close to PðG12Þ.
The difference between the two quantities G12 and R12

becomes important if the contacts between the metal and
the superconductor contain a tunnel barrier. A tunnel bar-
rier suppressesG12 but has no effect on R12. More precisely
[30], any series resistance in the single-mode contacts N1

andN2 which does not couple electrons and holes drops out
of the nonlocal resistance R12. This remarkable fact is
again a consequence of the product rule (14), which allows
us to factor a series conductance into a product of con-
ductances. A tunnel barrier in contact i then appears as a
multiplicative factor in 	i andGi, and thus drops out of the
ratio 
i ¼ 	i=Gi determining R12.
To demonstrate the effect of a tunnel barrier (tunnel

probability �), we have calculated the distribution of 	
using the Poisson kernel of the CRE [31], with the result

Pð	; �Þ ¼ �2

½�þ ð1� �Þj	j�3 �
�2j	j

½�þ ð1� �Þ	2�2 : (17)

The distribution of 
 remains given by Eq. (16), indepen-
dent of �. The dashed curves in Fig. 2 show how the
resulting distribution of the nonlocal conductance becomes
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narrowly peaked around zero for small �, in contrast to the
distribution of the nonlocal resistance.

Among the various candidate systems for chiral p-wave
superconductivity, the recent proposal [16] based on the
proximity effect in a spin-polarized two-dimensional elec-
tron gas seems particularly promising for our purpose.
Split-gate quantum point contacts (fabricated with well-
established technology) could serve as single-mode injec-
tor and detector of electrical current. The chirality of the
superconducting domains is determined by the polarity of
an insulating magnetic substrate, so the location of the
domain wall could be manipulated magnetically. The ap-
pearance of a nonlocal signal between the two point con-
tacts would detect the domain wall and the disappearance
upon interchange of injector and detector would demon-
strate the chirality.

The nonlocal conductance in the spin-polarized two-
dimensional electron gas has root-mean-square magnitude
e2=6h 
 6:5 �S, which is small but certainly measurable.
In Sr2RuO4 the signal can be much larger, because it is
multiplied first by the two spin directions and then by the
ratio d=c of the thickness d of the sample and the interlayer
separation c ¼ 1:3 nm. (Coupling between the spins and
between the layers will somewhat reduce this enhancement
factor.) The condition on temperature is only that it should
be well below the superconducting transition temperature
(1.5 K for Sr2RuO4), because there is no dephasing of the
edge channels along the domain wall for energies E � �0.

As a direction for further research, we note that domains
of opposite chirality (of linear dimension ’10 �m) are
formed spontaneously in disordered samples of Sr2RuO4.
Since, as we have shown here, domain walls may carry
electric current, a network of domain walls contributes to
the conductivity and may well play a role in the anomalous
(parity violating) current-voltage characteristic reported
recently [32].
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FIG. 2 (color online). Solid curves: probability distributions of
the nonlocal conductance G12 (in units of e2=h) and nonlocal
resistance R12 (in units of h=e2). These are results for a random
distribution of the 4� 4 orthogonal scattering matrices S1 and
S2. The dashed curve shows the narrowing effect on PðG12Þ of a
tunnel barrier in both contacts (tunnel probability � ¼ 0:1). In
contrast, PðR12Þ is not affected by a tunnel barrier.
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