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Electrons in bulk n-doped GaAs at a lattice temperature of 300 K are driven by ultrashort high-field

transients of up to 300 kV=cm in the terahertz frequency range. In the lowest conduction band the carriers

show coherent ballistic motion, which is detected via the THz field emitted by them. This partial Bloch

oscillation is reproduced by a quantum-kinetic theory of coherent transport on ultrafast time scales.
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Eighty years ago, Felix Bloch showed that electron wave
functions in the Coulomb potential of the nuclei in a crystal
are periodically modulated plane waves [1]. The spatially
periodic modulation of these Bloch functions restricts the
allowed energies of the electrons, leading to a dispersive

band structure Eð@ ~kÞ containing both allowed (bands) and
forbidden energy regions (gaps) [2]. Without scattering, an

electron (charge �e) in an electric field ~E is expected to
follow the dispersion of its band at a constant rate in
momentum space [3],

@ d ~k=dt ¼ �e ~E: (1)

The corresponding velocity ~v in real space is given by

~v ¼ @
�1r ~kEð@ ~kÞ: (2)

Thus, an electron moving in the periodic Coulomb poten-
tial of a crystal under the action of a constant external
electric field is expected to undergo a coherent periodic
oscillation both in real and momentum space. So far, such
Bloch oscillations [1] have been observed only in artificial
systems such as semiconductor superlattices [4], atoms
and/or Bose-Einstein condensates in optical lattices [5],
Josephson junction arrays [6], or optical waveguide arrays
[7]. The absence of Bloch oscillations in electron transport
through bulk crystals is attributed to efficient scattering of
electrons on a sub-100 fs time scale, a prediction of the
semiclassical Boltzmann transport equation (BTE) [8].

The BTE includes scattering rates described by two
important time constants, the energy relaxation time �E,
the average time in which a carrier loses its kinetic energy,
and the momentum relaxation time �p [see Fig. 1(a)].

Elastic scattering contributes to �p but not to �E and,

thus, �p < �E . In the most basic approach, �p and �E are

derived from Fermi’s golden rule (FGR) with the respec-
tive scattering matrix element and the density of final states
being the key quantities. For electric fields varying slower
than �E the BTE predicts stationary drift transport with a
field-dependent drift velocity [Fig. 1(b)]. For fields varying
faster than �p, the BTE predicts ballistic transport accord-

ing to Eq. (1). In the intermediate regime [Fig. 1(a)],
phenomena like incoherent (driftlike) velocity overshoot

occur with the velocity being in phase with the driving
field.
As shown in Fig. 1(a), the FGR approach including all

types of electron-phonon scattering in bulk GaAs predicts a
strong decrease of the momentum relaxation time �p with

increasing field [8]. For E � 300 kV=cm, a value of �p �
3 fs is found, restricting the regime of ballistic transport,
the prerequisite for Bloch oscillations, to negligibly small
times. The prediction of such short momentum relaxation
times is, however, beyond the validity of FGR, since FGR
is only applicable if the time interval between two scatter-
ing events is long compared to the duration of a scattering

FIG. 1 (color online). (a) Regimes of high-field transport in
GaAs as a function of the applied electric field. The energy (�E)
and momentum (�p) relaxation times are taken from the BTE

[8]. The quantum-kinetic regime (gray/yellow triangle) lies
between �p and the inverse LO phonon frequency ��1

LO.

(b) Stationary drift velocity (symbols: dynamic polaron theory,
solid line: BTE) vs electric field. The Gunn effect [21] occurs in
the range of negative slope E > 3 kV=cm.
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event. For electron-phonon interaction, optical phonon
scattering represents the shortest event with a duration of
the order of ��1

LO ¼ 115 fs, much longer than 3 fs. Thus, a

realistic picture of electron transport at high fields requires
a quantum-kinetic treatment for times t < ��1

LO [Fig. 1(a)].

In the ballistic range t < �p, the quantum-kinetic and the

BTE description give identical results.
In this Letter, we demonstrate a novel regime of electron

transport in bulk crystals driven by ultrashort high-field
transients in the terahertz (THz) frequency range with
electric-field amplitudes of up to 300 kV=cm. Electrons
in a thin n-doped GaAs crystal show a coherent ballistic
motion within the lowest conduction band, in this way
performing a partial Bloch oscillation that explores half-
way to the boundary of the first Brillouin zone. We analyze
the experimental results with a dynamic polaron model,
reproducing the observed behavior.

One can investigate experimentally the quantum-kinetic
regime of carrier transport [gray/yellow triangle in
Fig. 1(a)] by applying a strong electric field, E �
10 kV=cm, on a very short time scale, i.e., !�1

THz �
200 fs, and by simultaneously monitoring the transient
position of the electron in k space. In our experiments,
we apply THz transients with !�1

THz � 80 fs and 20<E<
300 kV=cm to electrons in a GaAs crystal and monitor
their transient velocity [Eq. (2)] via the coherent THz
radiation emitted by the carriers. The sample investigated
was grown by molecular beam epitaxy and consists of a
500 nm thin layer of Si-doped (donor concentration ND ¼
2� 1016 cm�3) GaAs clad between two 300 nm thin
Al0:4Ga0:6As layers [9]. A few-cycle THz pulse with a
center frequency of 2 THz, generated by optical rectifica-
tion of 25 fs pulses from a Ti:sapphire oscillator-amplifier
laser system, excites the sample placed in the focus of a
parabolic mirror. The direction of the electric field is along
the [100] direction of the sample. With a further pair of
parabolic mirrors the electric field of the transmitted THz
pulse is transferred to a thin ZnTe crystal, where it is
measured via electro-optic sampling (our setup is the
THz part of the setup shown in Fig. S1 of [10]). The optics
used ensures that, apart from a sign change, the electric-
field transients at the sample and at the electro-optic crystal
are identical. The entire optical path of the THz beam is
placed in vacuum. The electron current density [11],

jðtÞ ¼ �envðtÞ ¼ �2EemðtÞ=ðZ0dÞ; (3)

in the sample is proportional to the coherently emitted field
EemðtÞ ¼ EtrðtÞ � EinðtÞ, the difference of EtrðtÞ, the field
transmitted through the sample, and EinðtÞ, the field inci-
dent on the sample (n, electron density in the sample, Z0 ¼
�0c ¼ 377 �, the impedance of free space). As the thick-
ness of our sample d ¼ 500 nm is much less than the THz
wavelength � � 150 �m, all electrons in the sample ex-
perience the same driving field EtrðtÞ [12].

Our setup differs from the often used setup [13] where a
large area of the sample is imaged as a small focal spot on

the electro-optic crystal. In the latter case the electric field
measured at the electro-optic crystal is proportional to the
time derivative of the electric field at the sample.
In Figs. 2 and 3 we present experimental results at a

sample temperature of 300 K for incident THz pulses
with various amplitudes. Figure 2(a) and 2(b) show the
transients of the incident EinðtÞ and of the transmitted EtrðtÞ
pulses for an amplitude of 300 kV=cm. The difference
between these transients yields the field EemðtÞ emitted
by the sample and the electron velocity [Eq. (3)], shown
in Fig. 2(c). The noise level of the experimental data for
EemðtÞ is 0:5 kV=cm. Part (d) shows �kðtÞ calculated ac-
cording to Eq. (1) from EtrðtÞ. Plotting vðtÞ from Fig. 2(c)
versus �kðtÞ from Fig. 2(d) one obtains the dots in (f). To

FIG. 2 (color online). (a) Measured incident electric field as a
function of time, EinðtÞ. (b) Electric field transmitted through the
sample, EtrðtÞ. (c) Emitted electric field, EemðtÞ. (d) �kðtÞ ob-
tained from Eq. (1), in units of 2�=a. (e) Lowest conduction
band of GaAs in [100] direction. The negative mass regions are
hatched [2]. (f) Dots, EemðtÞ plotted versus �kðtÞ. Crosses show
the values at the times t1 to t5, marked by vertical lines in (a) to
(d). Solid line, velocity v calculated using Eq. (2). (g) Same plot
as in (f), but for an electric-field amplitude of 50 kV=cm [see
Fig. 3(b)].
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clarify the origin of the dots in (f), we have marked five
moments t1 to t5. Comparing these experimental results
with the v vs k relationship [solid line in (f), Eq. (2)] from
the conduction band (e), one finds a good agreement, point-
ing to ballistic transport across half the Brillouin zone. For
lower incident electric-field amplitudes [Fig. 2(g)] we ex-
plore a much smaller part of the Brillouin zone.

To illustrate the effect of the band structure on the
electron velocity consider the time between t2 and t3.
During this period, the electric field acting on the electron
is negative [Fig. 2(b)]. The electron velocity is negative at
t2, then gets positive, and then gets negative again
[Fig. 2(c)]. Thus, although the electric field has the same
direction between t2 and t3, there are times with positive
and times with negative acceleration, showing that the
effective mass of the electron changes sign. The effective
mass of a band electron is given by the curvature of its
band, meff ¼ @

2½d2Eð@kÞ=dk2��1. In the conduction band
of GaAs, the effective mass is positive around the � and the

X points and negative around the band maxima [hatched
areas in Fig. 2(e)], explaining the change of the sign of the
acceleration between t2 and t3. Even as late as t5, the data
still agree with the velocity-momentum relationship ex-
pected for ballistic transport. Our interpretation of the
results is in agreement with the experimental data for all
THz electric-field amplitudes measured (solid lines in
Fig. 3). The dashed curves are calculated assuming ballis-
tic transport according to Eq. (1). For drift transport, the
electron velocity vðtÞ / EemðtÞ would be in phase with the
driving field EtrðtÞ [dotted line in Fig. 3(b)]. We find,
however, that the zero crossings of EtrðtÞ (triangles) coin-
cide with the maxima (minima) of EemðtÞ demonstrating a
90� phase-delayed velocity, a direct evidence for ballistic
transport. Increasing the field amplitude [Figs. 3(c)–3(e)],
we observe higher-frequency components and a clipping of
the emitted field amplitude around jEemðtÞj< 7 kV=cm.
Since the emitted field is proportional to the electron
velocity [Eq. (3)], this clipping is caused by the maximum
velocity possible in the conduction band [Fig. 2(f)].
Now, we compare our experimental findings with two

different theoretical approaches, both based on the same
Hamiltonian in the single-electron picture [14], including

the conduction band structure Eð@ ~kÞ [2] and the interaction
with the external field EðtÞ in x direction:

HðtÞ ¼ Eð ~pÞ � exEðtÞ þX
b; ~q

P2
b; ~q þ!2

b; ~qQ
2
b; ~q

2

þX
b; ~q

Mb; ~q½Pb; ~q cos ~q ~rþ!b; ~qQb; ~q sin ~q ~r�: (4)

~r and ~p are position and momentum of the electron, Qb; ~q

and Pb; ~q are the coordinate and the conjugate momentum

of the phonon of branch b with wave vector ~q and fre-
quency !b; ~q, and the Mb; ~q are the electron-phonon cou-

plings. We include here polar coupling to longitudinal
optical phonons and deformation potential coupling to
acoustic phonons.
In the BTE [8] the electron wave functions are plane

waves with a characteristic momentum h ~pi ¼ @ ~k.
Electron-phonon scattering rates are calculated with
Fermi’s golden rule. While such calculations yield long
scattering times ( � 200 fs) for electrons near the conduc-
tion band minimum, the scattering times decrease mark-
edly for electrons able to scatter into side valleys (L andX).
Very short times (down to 3 fs) are obtained for electrons in
the negative mass regions. With such short scattering times
it would be impossible on our time scale (100 fs) to have
ballistic transport across these regions. Instead, one would
expect that nearly all electrons are scattered into the side
valleys, where they would remain for the rest of the pulse
[15], before reaching the negative mass regions. Since
electrons in the side valleys have rather low velocities
(<200 km=s) [8,16], scattering into the side valleys would
result in a drastic reduction of the electron velocity and
thus of the emitted field. Accordingly, one expects a strong

FIG. 3 (color online). Solid lines: emitted field transients
EemðtÞ for different amplitudes of the incident electric field.
The data in (e) and (f) are the same as in Fig. 2(c). Dashed
lines in (a) to (e): results of the model calculation based on the
band structure of GaAs. The dotted line and triangles in (b) show
the driving field and its zero-crossings. (f) Same experimental
data as in (e), now compared to the results (dash-dotted line) of a
calculation assuming the intervalley scattering rates of [8]. At
the time marked by the arrow the electrons can scatter into the
side valleys.
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signal EemðtÞ at the beginning of the pulse, but only very
weak signals at later times [dash-dotted line in Fig. 3(f)].
This is obviously not what is observed.

Our theory to describe high-field transport on short time
scales is an extension of [10,17]. In contrast to the BTE, we
solve the full Schrödinger equation of the electron-phonon
system approximatively. We assume that the electrons are
described by spherical bandwidth-limited Gaussian wave
packets with �x2 ¼ hx2i � hxi2 ¼ @

2=4�p2
x and �p2

x ¼
�p2

y ¼ �p2
z . The expectation values of the kinetic energy

hEð ~pÞi ¼ Ekinðhpxi;�p2
xÞ and of the velocity operator

hvxi ¼ V xðhpxi;�p2
xÞ are functions of both hpxi and

�p2
x. We obtain the following system of equations:

dhxi
dt

¼ hvxi ¼ V xðhpxi;�p2
xÞ; (5)

dhpxi
dt

¼�eEðtÞþX
b; ~q

expð� ~q2�x2=2ÞMb; ~q

�½hPb; ~qiqx sinqxhxi�!b; ~qhQb; ~qiqx cosqxhxi�; (6)

dhQb; ~qi
dt

¼ hPb; ~qi þMb; ~q cosqxhxi expð� ~q2�x2=2Þ; (7)

dhPb; ~qi
dt

¼ �!2
b; ~qhQb; ~qi �Mb; ~q!b; ~q sinqxhxi

� expð� ~q2�x2=2Þ; (8)

d�p2
x

dt
¼
�
@Ekinðhpxi;�p2

xÞ
@�p2

x

��1
�
V xðhpxi;�p2

xÞ

�X
b; ~q

expð� ~q2�x2=2ÞMb; ~q½hPb; ~qiqx sinqxhxi

�!b; ~qhQb; ~qiqxcosqxhxi�þ�lossðpx;�p
2
x;TLÞ

�½Ekinðhpxi;meffkBTLÞ�Ekinðhpxi;�p2
xÞ�

�
: (9)

Emission and absorption of incoherent phonons are de-
scribed by the energy relaxation rate �lossðpx;�p

2
x; TLÞ,

which is low enough [8] that it can be calculated by
Fermi’s golden rule. In the absence of external electric
fields this term relaxes the wave-packet size to its value
at thermal equilibrium, �p2

x ¼ meffkBTL. Eqs. (5)–(8) are
similar to those of the classical polaron [18]. The main
difference stems from the finite wave-packet size �x2 ¼
@
2=4�p2

x [Eq. (9)]. This size determines the friction forces
acting on the electron, since only phonons with ~q2 <
1=�x2 can couple efficiently [Eq. (6)]. Thus, for large
wave packets the friction is weak, leading to ballistic
transport, for small ones the friction is strong, leading to
drift transport. In our experiment, we start with a large
wave packet corresponding to a small �p2

x. To increase
�p2

x, incoherent energy has to be supplied by the friction
force [Eq. (9)], which takes several 100 fs, leading on

ultrafast time scales to negligible changes of �p2
x and,

thus, to ballistic transport. This behavior originates from
quantum-kinetic memory effects in the electron-phonon
interaction. Theoretical results for E< 80 kV=cm
[17,19] have shown that energy nonconserving transitions
lead to interferences between the electron–electric-field
and the electron-phonon interaction. Our experiments and
simulations confirm this trend for much higher fields.
Outside the quantum-kinetic regime our dynamic po-

laron theory and the semiclassical BTE [8] give identical
results, e.g., for the stationary drift velocity in high fields
[Fig. 1(b)]. For the long times inherent in stationary trans-
port, enough energy can be supplied to the polaron to
decrease its wave-packet size to very low values [20],
leading to strong friction forces and thus to drift transport
[16].
To conclude, we have observed ballistic transport of

electrons in GaAs across half the Brillouin zone by time-
resolved high-field THz measurements. We present a
model for high-field transport using polarons that agrees
with our experimental results on short time scales and
yields the correct drift velocity on long time scales.
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