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A popular theory of self-organized criticality relates driven dissipative systems to systems with

conservation. This theory predicts that the stationary density of the Abelian sandpile model equals the

threshold density of the fixed-energy sandpile. We refute this prediction for a wide variety of underlying

graphs, including the square grid. Driven dissipative sandpiles continue to evolve even after reaching

criticality. This result casts doubt on the validity of using fixed-energy sandpiles to explore the critical

behavior of the Abelian sandpile model at stationarity.
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In a widely cited series of papers [1–5], Dickman,
Muñoz, Vespignani, and Zapperi (DMVZ) developed a
theory of self-organized criticality as a relationship be-
tween driven dissipative systems and systems with conser-
vation. This theory predicts a specific relationship between
the Abelian sandpile model of Bak, Tang, and Wiesenfeld
[6], a driven system in which particles added at random
dissipate across the boundary, and the corresponding
‘‘fixed-energy sandpile’’, a closed system in which the
total number of particles is conserved.

After defining these two models and explaining the
conjectured relationship between them in the DMVZ para-
digm of self-organized criticality, we present data from
large-scale simulations which strongly indicate that this
conjecture is false on the two-dimensional square lattice.
We then examine the conjecture on some simpler families
of graphs in which we can provably refute it.

Early experiments [7] already identified a discrepancy,
at least in dimensions 4 and higher, but later work focused
on dimension 2 and missed this discrepancy (it is very
small). Some recent papers (e.g., [8]) restrict their study to
stochastic sandpiles because deterministic sandpiles be-
long to a different universality class, but there remains a
widespread belief in the DMVZ paradigm for both deter-
ministic and stochastic sandpiles [9,10].

Despite our contrary findings, we believe that the central
idea of the DMVZ paradigm is a good one: the dynamics of
a driven dissipative system should in some way reflect the
dynamics of the corresponding conservative system. Our
results point to a somewhat different relationship than that
posited in the DMVZ series of papers: the driven dissipa-
tive model exhibits a second-order phase transition at the
threshold density of the conservative model.

Bak, Tang, and Wiesenfeld [6] introduced the Abelian
sandpile as a model of self-organized criticality; for mathe-
matical background; see [11]. The model begins with a
collection of particles on the vertices of a finite graph. A
vertex having at least as many particles as its degree
topples by sending one particle along each incident edge.

A subset of the vertices are distinguished as sinks: they
absorb particles but never topple. A single time step con-
sists of adding one particle at a random site, and then
performing topplings until each nonsink vertex has fewer
particles than its degree. The order of topplings does not
affect the outcome [12]. The set of topplings caused by the
addition of a particle is called an avalanche.
Avalanches can be decomposed into a sequence of

‘‘waves’’ so that each site topples at most once during
each wave. Over time, sandpiles evolve toward a stationary
state in which the waves exhibit power-law statistics [13]
(though the full avalanches seem to exhibit multifractal
behavior [14,15]). Power-law behavior is a hallmark of
criticality, and since the stationary state is reached appar-
ently without tuning of a parameter, the model is said to be
self-organized critical.
To explain how the sandpile model self-organizes to

reach the critical state, Dickman et al. [1,3] introduced
an argument which soon became widely accepted: see, for
example, [[16], Ch. 15.4.5] and [17–19]. Despite the ap-
parent lack of a free parameter, they argued, the dynamics
implicitly involve the tuning of a parameter to a value
where a phase transition takes place. The phase transition
is between an active state, where topplings take place, and
a quiescent ‘‘absorbing’’ state. The parameter is the den-
sity, the average number of particles per site. When the
system is quiescent, addition of new particles increases the
density. When the system is active, particles are lost to the
sinks via toppling, decreasing the density. The dynamical
rule ‘‘add a particle when all activity has died out’’ ensures
that these two density changing mechanisms balance one
another out, driving the system to the threshold of
instability.
To explore this idea, DMVZ introduced the fixed-energy

sandpile model (FES), which involves an explicit free
parameter � , the density of particles. On a graph with N
vertices, the system starts with �N particles at vertices
chosen independently and uniformly at random. Unlike
the driven dissipative sandpile described above, there are
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no sinks and no addition of particles. Subsequently the
system evolves through toppling of unstable sites.
Usually the parallel toppling order is chosen: at each
time step, all unstable sites topple simultaneously.
Toppling may persist forever, or it may stop after some
finite time. In the latter case, we say that the system
stabilizes; in the terminology of DMVZ, it reaches an
‘‘absorbing state.’’

A common choice of underlying graph for FES is the
n� n square grid with periodic boundary conditions. It is
believed, and supported by simulations [20], that there is a
threshold density �c, such that for � < �c, the system
stabilizes with probability tending to 1 as n ! 1; and
for � > �c, with probability tending to 1 the system does
not stabilize.

The density conjecture.—For the driven dissipative sand-
pile on the n� n square grid with sinks at the boundary, as
n ! 1 the stationary measure has an infinite-volume limit
[21], which is a measure on sandpiles on the infinite grid
Z2. One gets the same limiting measure whether the grid
has periodic or open boundary conditions, and whether
there is one sink vertex or the whole boundary serves as
a sink [21] (see also [22] for the corresponding result on
random spanning trees). The statistical properties of this
limiting measure have been much studied [23–25].
Grassberger conjectured that the expected number of par-
ticles at a fixed site is 17=8, and it is now known to be
17=8� 10�12 [25]. We call this value the stationary den-
sity �s of Z

2.
DMVZ believed that the combination of driving and

dissipation in the classical Abelian sandpile model should
push it toward the threshold density �c of the fixed-energy
sandpile. This leads to a specific testable prediction, which
we call the density conjecture.

Density conjecture [4].—On the square grid, �c ¼ 17=8.
More generally, �c ¼ �s.

Vespignani et al. [4] write of FES on the square grid,
‘‘the system turns out to be critical only for a particular
value of the energy density equal to that of the stationary,
slowly driven sandpile.’’ They add that the threshold den-
sity �c of the fixed-energy sandpile is ‘‘the only possible
stationary value for the energy density’’ of the driven
dissipative model. In simulations they find �c ¼
2:1250ð5Þ, adding in a footnote ‘‘It is likely that, in fact,
17=8 is the exact result.’’ Other simulations to estimate �c
also found the value very close to 17=8 [1,2].

Our goal in the present Letter is to demonstrate that the
density conjecture is more problematic than it first appears.
Table I presents data from large-scale simulations indicat-
ing that �cðZ2Þ is 2.125288 to six decimals; close to but not
exactly equal to 17=8. These data are graphed in Fig. 1.

In each trial, we added particles one at a time at uni-
formly random sites of the n� n torus. After each addi-
tion, we performed topplings until either all sites were
stable, or every site toppled at least once. For deterministic
sandpiles on a connected graph, if every site topples at least

once, the system will never stabilize [26–28]. We recorded
m=n2 as an empirical estimate of the threshold density
�cðZ2

nÞ, where m was the maximum number of particles
for which the system stabilized. We averaged these em-
pirical estimates over many independent trials.
We used a random number generator based on the

Advanced Encryption Standard (AES-256), which has
been found to exhibit excellent statistical properties
[29,30]. Our simulations were conducted on a high per-
formance computing (HPC) cluster of computers.
Phase transition at �c threshold.—We consider the den-

sity conjecture on several other families of graphs, includ-
ing some for which we can determine the exact values �c
and �s analytically.

TABLE I. Fixed-energy sandpile simulations on n� n tori
Z2
n. The third column gives our empirical estimate of the

threshold density �cðZ2
nÞ for Z2

n. The standard deviation in
each of our estimates of �cðZ2

nÞ is 4� 10�7. To six decimals,
the values of �cðZ2

2048Þ; . . . ; �cðZ2
16384Þ are all the same. The rapid

convergence is due in part to periodic boundary conditions.

n Trials Estimate of �cðZ2
nÞ

64 228 2:124 956 1� 0:000 000 4
128 226 2:125 185 1� 0:000 000 4
256 224 2:125 257 2� 0:000 000 4
512 222 2:125 278 6� 0:000 000 4
1024 220 2:125 285 3� 0:000 000 4
2048 218 2:125 287 6� 0:000 000 4
4096 216 2:125 287 7� 0:000 000 4
8192 214 2:125 288 0� 0:000 000 4

16 384 212 2:125 287 7� 0:000 000 4

n

c( 2
n )

2.125288

2.125000000000

64 128 256 512 1024 2048 4096 8192 16384

FIG. 1. The data of Table I from n ¼ 64 to n ¼ 16 384 are
well approximated by �cðZ2

nÞ ¼ 2:125 288 1� 3� 10�7 �
ð0:390� 0:001Þn�1:7. (The error bars are too small to be visible,
so the data are shown as points.) We conclude that the asymp-
totic threshold density �cðZ2

nÞ is 2:125 288 to six decimals. In
contrast, the stationary density �sðZ2

nÞ is 2:125 000 000 000 to
twelve decimals.
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Dhar [12] defined recurrent sandpile configurations and
showed that they form an Abelian group. A consequence of
his result is that the stationary measure for the driven
dissipative sandpile on a finite graph G with sinks is the
uniform measure on recurrent configurations. The station-
ary density �sðGÞ is the expected total number of particles
in a uniform random recurrent configuration, divided by
the number of nonsink vertices in G.

The threshold density �c and stationary density �s for
different graphs is summarized in Table II. The only graph
on which the two densities are known to be equal is Z
[17,18,27]. On all other graphs we examined, with the
possible exception of the 3-regular Cayley tree, it appears
that �c � �s.

Each row of Table II represents an infinite family of
graphs Gn indexed by an integer n � 1. For example, for
Z2 we take Gn to be the n� n square grid, and for the
regular trees we take Gn to be a finite tree of depth n. As
sinks in Gn we take the set of boundary sites Gn nGn�1

(note that on trees this corresponds to wired boundary
conditions). The value of �s reported is limn!1�sðGnÞ.

The exact values of �s for regular trees (Bethe lattices)
were calculated by Dhar and Majumdar [31]. The corre-
sponding values of �c we report come from simulations
[32]. We derive or simulate the values of �s and �c for the
bracelet, flower, ladder, and complete graphs in [32].

As an example, consider the bracelet graph Bn, which is
a cycle of n vertices, with each edge doubled (see Fig. 2). A
site topples by sending out 4 particles: 2 to each of its two
neighbors. One site serves as the sink. To compare the
densities �c and �s, we consider the driven dissipative
sandpile before it reaches stationarity, by running it for
time �. More precisely, we place �n particles uniformly at
random, stabilize the resulting sandpile, and let �nð�Þ
denote the expected density of the resulting stable configu-
ration. In the long version of this Letter [32] we prove the
following:

Theorem 1 ([32]).—For the bracelet graph Bn, in the
limit as n ! 1, (i) The threshold density �c is the unique
positive root of � ¼ 5

2 � 1
2 e

�2� (numerically, �c ¼
2:496 608). (ii) The stationary density �s is 5=2. (iii) The
final density �nð�Þ, as a function of initial density �,
converges pointwise to a limit �ð�Þ, where

�ð�Þ ¼ min

�
�;

5� e�2�

2

�
¼

�
�; � � �c
5�e�2�

2 ; � > �c:

Part 3 of this theorem shows that despite the inequality
�s � �c, a connection remains between the driven dissipa-
tive dynamics used to define �s and the conservative dy-
namics used to define �c: since the derivative �0ð�Þ is
discontinuous at � ¼ �c, the driven sandpile undergoes a
second-order phase transition at density �c. For � < �c, the
driven sandpile loses very few particles to the sink, and the
final density equals the initial density �; for � > �c it loses
a macroscopic proportion of particles to the sink, so the

final density is strictly smaller than �. As Fig. 3 shows, the
sandpile continues to evolve as � increases beyond �c; in
particular, its density keeps increasing.
We are also able to prove that a similar phase transition

occurs on the flower graph, shown in Fig. 2. Interestingly,
the final density �ð�Þ for the flower graph is a decreasing
function of � > �c (Fig. 3 bottom).
Our proofs make use of local toppling invariants on

these graphs. On the bracelet graph, since particles always
travel in pairs, the parity of the number of particles on a
single vertex is conserved. On the flower graph, the differ-

FIG. 2. The graphs on which we compare �s and �c: the grid
(upper left), bracelet graph (upper right), flower graph (2nd row
left), complete graph (2nd row right), Cayley trees (Bethe
lattices) of degree d ¼ 3, 4, 5 (3rd row), and ladder graph
(bottom).

TABLE II. Stationary and threshold densities for different
graphs. Exact values are in bold.

Graph �s �c

Z 1 1
Z2 17=8 ¼ 2:125 2.125288. . .
Bracelet 5=2 ¼ 2:5 2:496 608 . . .
Flower graph 5=3 ¼ 1:666 667 . . . 1:668 898 . . .
Ladder graph 7

4 �
ffiffi
3

p
12 ¼ 1:605 662 . . . 1.6082. . .

Complete graph 1=2� nþOð ffiffiffi
n

p Þ 1� n�Oð ffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn

p Þ
3-regular tree 3=2 1.500 00. . .
4-regular tree 2 2.000 41. . .
5-regular tree 5=2 2.511 67. . .
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ence modulo 3 of the number of particles on the two
vertices in a single ‘‘petal’’ is conserved.

One might guess that the failure of the density conjec-
ture is due only to the existence of local toppling invariants,
or else to boundary effects from the sinks. The ladder graph
(Fig. 2) has no local toppling invariants; moreover, it is
essentially one dimensional, so the bulk of the graph is well
insulated from the sinks at the boundary. Nevertheless, we
find [32] a small but undeniable difference between �s and
�c on the ladder graph.

Conclusions.—The conclusion of [5] that ‘‘FES are
shown to exhibit an absorbing state transition with critical
properties coinciding with those of the corresponding
sandpile model’’ should be reevaluated.

In response to this Letter, several researchers have sug-
gested to us that perhaps the density conjecture holds for
stochastic sandpiles even if not for deterministic ones. This
hypothesis deserves some scrutiny.

For the driven dissipative sandpile, there is a transition
point at the threshold density of the FES, beyond which a
macroscopic amount of sand begins to dissipate. The con-
tinued evolution of the sandpile beyond �c shows that
driven sandpiles have (at least) a one-parameter family of
distinct critical states. While the stationary state has rightly
been the object of intense study, we suggest that these
additional critical states deserve further attention.
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[21] S. R. Athreya and A.A. Járai, Commun. Math. Phys. 249,

197 (2004).
[22] R. Pemantle, Ann. Probab. 19, 1559 (1991).
[23] S. N. Majumdar and D. Dhar, J. Phys. A 24, L357

(1991).
[24] V. B. Priezzhev, J. Stat. Phys. 74, 955 (1994).
[25] M. Jeng, G. Piroux, and P. Ruelle, J. Stat. Mech. (2006)

P10015.
[26] G. Tardos, SIAM J. Discrete Math. 1, 397 (1988).
[27] A. Fey-den Boer, R. Meester, and F. Redig, Ann. Probab.

37, 654 (2009).
[28] A. Fey, L. Levine, and Y. Peres, J. Stat. Phys. 138, 143

(2010).
[29] P. Hellekalek and S. Wegenkittl, ACM Trans. Model.

Comput. Simul. 13, 322 (2003).
[30] P. L’Ecuyer and R. Simard, ACM Trans. Math. Softw. 33,

No. 22, 40 (2007).
[31] D. Dhar and S.N. Majumdar, J. Phys. A 23, 4333 (1990).
[32] A. Fey, L. Levine, and D. B. Wilson, arXiv:1001.3401.

0 1 2 3

1

2

6.24.2 2.5
2.48

2.49

2.5

0 1 2 3

1

2

1.6 1.7 1.8
1.65

1.66

1.67

FIG. 3. Density �ð�Þ of the final stable configuration as a
function of initial density � on the bracelet graph (top row)
and flower graph (bottom row) as the graph size tends to infinity.
A phase transition occurs at � ¼ �c. At first glance (left panels)
it appears that the driven sandpile reaches its stationary density
�s at this point, but closer inspection (right panels) reveals that
the final density �ð�Þ continues to change as � increases beyond
�c. These graphs are exact.
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