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Building on mode-coupling-theory calculations, we report a novel scenario for multiple glass tran-

sitions in a purely repulsive spherical potential: the square shoulder. The liquid-glass transition lines

exhibit both melting by cooling and melting by compression as well as associated diffusion anomalies,

similar to the ones observed in water. Differently from all previously investigated models, we find for

small shoulder widths a glass-glass line that is disconnected from the liquid phase. Upon increasing the

shoulder width such a glass-glass line merges with the liquid-glass transition lines, featuring two distinct

end point singularities that give rise to logarithmic decays in the dynamics. We analytically explain these

findings by considering the interplay of different repulsive length scales.
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In the field of glassy slow dynamics, many experiments
and simulations have been inspired in recent years by the
mode-coupling theory (MCT) of the glass transition [1].
The theory deals with density autocorrelation functions
�qðtÞ with wave vectors q, and predicts their long-time

limits fq. While in the liquid state fq ¼ 0, the glass state is

defined by fq > 0. MCT was first applied to the hard-

sphere system (HSS) where a liquid-glass transition was
identified [2], and confirmed by experiments [3]. In addi-
tion to liquid-glass transitions, for certain interactions
MCT also predicts glass-glass transitions: In this case an
existing first glass state with f1q transforms into a second

distinct glass state with f2q > f1q discontinuously. Such

glass-glass transitions were predicted for the square-well
system (SWS) where the hard-core repulsion is supple-
mented by a short-ranged attraction [4–6]. In the SWS, the
first glass state is driven by repulsion like in the HSS and
the second glass state is driven by attraction. The competi-
tion between these two mechanisms is responsible for the
emergence of glass-glass transitions. Such a line of glass-
glass transitions extends smoothly a line of liquid-glass
transitions into the glass state and terminates in an end
point singularity. Close to the end point singularity the
dynamics is ruled by logarithmic relaxation [7]. The pre-
dicted logarithmic decays were identified in computer
simulations and establish the relevance of end point singu-
larities for the description of glassy dynamics [8,9]. A
second dynamical anomaly predicted for the SWS con-
cerns a reentrant liquid-glass line that causes melting by

cooling [4–6]. This prediction of MCT was confirmed by
computer simulation [10] and by experiments in colloidal
suspensions [11,12]. For a comparison of the MCT results
with experiments a clarification seems appropriate: All
glass and glass-glass transitions cited above or presented
in the following refer to the kinetic glass transition at Tc or
�c and not to a thermodynamic transition. For molecular
systems, the relaxation time exhibits a large increase al-
ready around Tc but does not actually diverge within the
usually very large available experimental windows.
In this work we replace the attractive length scale in the

SWS by a second repulsive length scale � of the square-
shoulder system (SSS) as shown in Fig. 1. The particle
diameter d is set to unity in the following. The SSS can be
considered the simplest potential with two competing in-
terparticle distances; it is applied to describe properties of
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FIG. 1 (color online). Square-shoulder potential with control
parameters packing fraction ’ ¼ ��d3=6, shoulder height � ¼
u0=kBT, and shoulder width � for particles of diameter d at
density �.
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metallic glasses like cerium or cesium [13], micellar [14]
and granular materials [15], silica [16], and water [17].

In the following, the glass-transition diagrams are calcu-
lated from the singularities in the roots of the MCT func-
tional [1]

F q½V; fk� ¼
X

~kþ ~p¼ ~q

Vq;kpfkfp ¼ fq
1� fq

; (1a)

with vertex V given by wave vector moduli q, k, p, the
static structure factor Sq, and the direct correlation func-

tion cq:

Vq;kp ¼ �SqSkSpf ~q � ½ ~kck þ ~pcp�g2=q4: (1b)

Quantities Sq and cq are given by the interaction potential.

The discretization of the functionals is chosen as for the
HSS and the SWS [5,18] with a number of wave vectors
M ¼ 600 and a wave vector cutoff dqmax ¼ 80, and the
static structure factors of the SSS are obtained within the
Rogers-Young approximation [19,20]. Further details of
the calculations shall be found in a subsequent publication
[21]. For specific values of the control parameters packing
fraction’, shoulder height �, and shoulder width �, Eq. (1)
exhibits singularities where the fq change discontinuously

indicating liquid-glass or glass-glass transitions. At these
singularities one can define the so-called exponent pa-
rameter � < 1 that fixes all other critical exponents of the
theory [1]. While typically at liquid-glass transitions,
� � 0:7, � approaches unity at the end point of glass-glass
transition lines signaling the emergence of logarithmic
decay laws [7].

Figure 2(a) shows the glass-transition scenario for � ¼
0:13: The liquid-glass transition line (diamonds) starts at
the HSS limiting value of ’c

HSS ¼ 0:5206 (dashed line for

small �) for vanishing shoulder width �. For increasing
shoulders and up to � � 1:5, the curve exhibits a shift in
the transition packing fraction ’ð�Þ to higher values—the
glass initially melts upon cooling. This trend can be traced
to the evolution of the static structure factor which be-
comes sharper and moves to lower wave vectors for higher
�; the corresponding pair distribution functions show a
higher probability for particles being at larger distances
from each other. Hence, larger particle separations weaken
the cage and are compensated by higher densities at the
glass transition. For states above the glass transition this
means that the relaxation in the system may initially speed
up when increasing the shoulder. For shoulder heights from
2kBT to 3:5kBT, i.e., for 2 & � & 3:5, the glass-transition
curve bends downwards and reaches the limiting value of
the HSS for the outer core ’̂c

HSS ¼ ’c
HSS=ð1þ �Þ3 ¼

0:3608 (dashed line for large �).
If the packing fractions and repulsive strengths are in-

creased beyond the liquid-glass transition line, one encoun-
ters an additional line of glass-glass-transition singularities
(filled circles). Differently from glass-glass lines in all
models investigated previously, this additional line is lo-

cated inside the glassy regime, disconnected from any
liquid-glass transition line. It is bounded by two end point
singularities (open circles) where the additional disconti-
nuity in the fq vanishes.

When increasing the shoulder width further, the glass-
glass and liquid-glass transition lines move towards each
other and start to merge for sufficiently high shoulders at
around � ¼ 0:145. Figure 2(b) shows the situation for � ¼
0:15: From � ¼ 2:0 to 3.5, the former glass-glass line now
indicates a transition from the liquid directly into the
second glass state. For �< 2:0 and for �> 3:5, the for-
merly isolated glass-glass line crosses the liquid-glass line
and extends into the glassy regime as two glass-glass
transition lines.
Figure 2(b) also exhibits the reentry phenomenon melt-

ing by cooling for small � as discussed before for � ¼
0:13, but in addition a second reentry phenomenon is found
between � ¼ 3:0 and 3.5, where melting can also be in-
duced by compression. The trends can again be traced back
to the behavior of the static structure: Increasing the pack-
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FIG. 2 (color online). Glass-transition diagrams for the SSS.
Diamonds (r) indicate liquid-glass transitions, filled circles (d)
show glass-glass transition points terminating in two end point
singularities (�). (a) � ¼ 0:13. Dashed lines display the respec-
tive limits for hard spheres of diameter 1 and 1þ �. The line of
glass-glass transitions is disconnected from the line of liquid-
glass transitions, and moves towards and crosses it for larger
shoulder width. (b) � ¼ 0:15. Crosses (�) indicate the five states
discussed in Fig. 3 relating the glass-glass transitions to features
in the static structure. The dashed curve exhibits the liquid-glass
transition line for a reduced wave vector cutoff of dqmax ¼ 40
demonstrating that without contributions of higher wave vectors
to the functional in Eq. (1) the lines of glass-glass transitions are
absent.
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ing fraction from low values to around ’ � 0:45, the pair
distribution function shows an increased probability for
particle contact at both inner and outer cores. However,
for values larger than ’ � 0:45, the contact at the inner
core grows at the expense of contact at the outer core;
interparticle contacts at the outer core are suppressed by
the high density and particles now collide much more
frequently at their inner cores. Since the cage represented
by the inner core is too loose to trigger glassy arrest at such
density, this is compensated by lower temperature (or
equivalently by higher �) at the glass transition.

For the explanation of the glass-glass transitions, it is
necessary to identify contributions to the functionals in
Eq. (1) that come from wave vectors other than the prin-
cipal peaks of Sq. It will be shown that for the SSS, the

interplay between the hard and the soft core introduces
changes in the contact values of the pair distribution func-
tion that are responsible for the glass-glass transi-
tions. Figure 3 shows gðrÞ for the five states indicated in
Fig. 2(b). Strong repulsion at a specific interparticle dis-
tance leads to an increase in the contact value of gðrÞ [22].
While gðrÞ for the HSS only exhibits a contact value at
r=d ¼ 1 (cf. filled circle in Fig. 3), for finite shoulder a
second contact value emerges at r=d ¼ 1þ � (cf. squares
in Fig. 3). If the outer core becomes dominant, the contact
value at the inner core becomes suppressed (cf. triangles in
Fig. 3), and for intermediate states, both contact values can
become equally important (cf. diamonds in Fig. 3). Stars in
Fig. 3 for an intermediate point between the glass and the
glass-glass transition show that the structural trend contin-
ues smoothly across the glass-glass transition. It is known
from the theory of Fourier transformations that the dis-
continuities of gðrÞ, e.g., the contact values, determine the

large wave vector behavior of Sq and cq [23]. Sq and cq in

turn enter in the MCT through Eq. (1b).
For a qualitative picture, it is enough to assume two

hard-core repulsions at r=d ¼ 1 and r=d ¼ 1þ � in
Percus-Yevick (PY) approximation. For PY, the contact
value is known analytically [24], Bð’Þ ¼ ð1þ ’=2Þ=ð1�
’Þ2. Hence, for large enough wave vectors, cq for a single

core becomes casyq ¼ Bð’Þ cosðqÞ=q2. Inner and outer core
have the respective contributions c

asy
1 ðqÞ ¼ B1 cosðqÞ=q2

and c2ðqÞ ¼ B2 cosðq½1þ ��Þ=q2, where factors of (1þ
�) in q2 were absorbed into B2. The interference of the two
oscillations of different frequency, c

asy
1 ðqÞ þ c

asy
2 ðqÞ, re-

sults in a beating with an amplitude, that can become twice
as large as the individual oscillations, and an interference
frequency d�q ¼ 2�=�, e.g., for � ¼ 0:15 one gets �q �
42d�1. As a consequence, the interference of the two
contact values seen in Fig. 3 creates additional contribu-
tions in Eq. (1b) from the tail in cq between qd ¼ 20 and

80, and these additional contributions allow for the possi-
bility of a glass-glass transition as seen in Fig. 2.
To show explicitly that the large-q contributions cause

the glass-glass transition line, we eliminate these contribu-
tions from the functional by shifting the wave vector cutoff
from qd ¼ 80 to qd ¼ 40 and perform additional calcu-
lations. The result is shown in Fig. 2(b) as the dashed line.
With the beating now switched off, the dashed line of
liquid-glass transitions is recovered without any indication
of crossings or glass-glass transitions. For other potentials
with sufficiently distinct length scales, e.g., a linear ramp
instead of a square shoulder, similar arguments hold.
Hence, the glass-glass transitions can also occur for some-
what smoother potentials.
In summary, the following physical picture of the glass-

glass transitions emerges: Upon crossing the glass-glass
transition line, the localization mechanism of the glass
changes from the inner to the outer shell. The localization
length decreases drastically since the free space between
outer and inner core is no longer available to the particles.
At the upper end point, the system is so dense and the
shoulder so low that it is no longer possible to arrest at the
outer shell, the arrest always takes place at the inner shell,
and hence the glass-glass transition vanishes. At the lower
end point, the density is too low to force a transition from
the outer to the inner shell, and the glass-glass transition
vanishes as well.
To make contact with experimental systems, we redraw

the transition diagram of Fig. 2(b) in a pressure versus
temperature, P-T, diagram in Fig. 4, using the Rogers-
Young thermodynamically consistent equation of state.
For a path of constant T and variable P, the diffusivity of
the dynamics varies with the distance from the liquid-glass
transition line. For example, for T � 0:35u0=kB and start-
ing from low P, the diffusivity first decreases until P �
15u0=d

3, then it increases anomalously until around P �
30u0=d

3, and then it decreases again. Such behavior,
known as diffusion anomaly, is experimentally observed
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FIG. 3 (color online). Pair distribution functions gðrÞ and
contact values as filled symbols for the five states indicated by
crosses in Fig. 2(b): ð�; ’Þ ¼ ð0:0; 0:5Þ, circle; (1.0, 0.5),
squares; (4.0, 0.5), diamonds; (4.0, 0.35), triangles; (3.6, 0.48),
stars. Higher contact values Bð’Þ generate additional contribu-
tions to the functional in Eq. (1) and can allow for glass-glass
transition lines as in Figs. 2(a) and 2(b) if the contributions are
large enough. See text for discussion.
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in liquid water [25]. Changing pressure and temperature
while measuring the diffusion in the fluid regime is pos-
sible in experiments; the remaining parameters d and u0
were estimated recently for models of water [26].

In conclusion, MCT calculations predict for the square-
shoulder system three novel features in the glass-transition
diagram: (1) melting by cooling, (2) melting by compres-
sion—both induced by a disruption of the local structure—
and (3) a glass-glass transition line with two end points
which is caused by a discontinuous transition between
localization at the inner and the outer core of the particles.
For comparison with experiments and computer simulation
studies, a few additional (partly well-known) findings need
to be considered. First, since both MCT and the theory for
Sq involve approximations, shifts in the numerical values

for the transition points are expected, i.e., the transition for
hard spheres is found for ’ � 0:58, which is 10% higher
than calculated. However, the qualitative predictions for
the reentry and glass-glass transitions were found remark-
ably robust [11,12]. Second, for measurements over large
enough windows in time, also activated processes become
relevant for the relaxation that are not captured by the
idealized theory [1]. Earlier work suggests that those pro-
cesses come into play late enough to allow for sufficient
windows in time to test the theory [3,12]. Third, the
relevance of the glass-glass transition scenario found here
goes beyond the specific square-shoulder potential: The
competition between two repulsive length scales and the
presence of diffusion anomalies are observed in several
different contexts, ranging from soft matter systems
[14,27] to silica [16] and complex liquids [26,28,29]. Our
work opens a perspective for understanding slow dynamics
in these disparate systems.
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FIG. 4 (color online). Data from Fig. 2(b) for � ¼ 0:15 shown
with variables pressure P and temperature T. Crosses (�)
delimit the approximate region for a diffusion anomaly. Above
and below that region, the diffusion coefficient decreases with
pressure; within the region the diffusion coefficient increases
with pressure P.

PRL 104, 145701 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
9 APRIL 2010

145701-4

http://dx.doi.org/10.1088/0022-3719/17/33/005
http://dx.doi.org/10.1088/0022-3719/17/33/005
http://dx.doi.org/10.1103/PhysRevA.43.5429
http://dx.doi.org/10.1103/PhysRevA.43.5429
http://dx.doi.org/10.1103/PhysRevE.59.5706
http://dx.doi.org/10.1103/PhysRevE.59.5706
http://dx.doi.org/10.1103/PhysRevE.59.5706
http://dx.doi.org/10.1103/PhysRevE.63.011401
http://dx.doi.org/10.1103/PhysRevE.63.011401
http://dx.doi.org/10.1103/PhysRevE.59.R1347
http://dx.doi.org/10.1103/PhysRevE.66.011405
http://dx.doi.org/10.1103/PhysRevE.67.031406
http://dx.doi.org/10.1103/PhysRevE.67.031406
http://dx.doi.org/10.1103/PhysRevLett.91.268301
http://dx.doi.org/10.1103/PhysRevLett.91.268301
http://dx.doi.org/10.1103/PhysRevE.65.050802
http://dx.doi.org/10.1103/PhysRevE.65.050802
http://dx.doi.org/10.1103/PhysRevLett.89.125701
http://dx.doi.org/10.1103/PhysRevLett.89.125701
http://dx.doi.org/10.1103/PhysRevE.69.011503
http://dx.doi.org/10.1103/PhysRevLett.38.1213
http://dx.doi.org/10.1103/PhysRevLett.38.1213
http://dx.doi.org/10.1103/PhysRevLett.99.248301
http://dx.doi.org/10.1088/0953-8984/20/24/244118
http://dx.doi.org/10.1063/1.480241
http://dx.doi.org/10.1103/PhysRevE.55.7153
http://dx.doi.org/10.1103/PhysRevA.30.999
http://dx.doi.org/10.1088/0953-8984/11/50/308
http://dx.doi.org/10.1103/PhysRevLett.10.321
http://dx.doi.org/10.1063/1.433518
http://dx.doi.org/10.1063/1.433518
http://dx.doi.org/10.1103/PhysRevE.77.042201
http://dx.doi.org/10.1103/PhysRevLett.90.238301
http://dx.doi.org/10.1103/PhysRevE.79.051202
http://dx.doi.org/10.1063/1.3213615
http://dx.doi.org/10.1063/1.3213615

