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Plasma turbulence in a simple magnetized torus (SMT) is explored for the first time with three-

dimensional global fluid simulations. Three turbulence regimes are described: an ideal interchange mode

regime, a previously undiscovered resistive interchange mode regime, and a drift-wave regime. As the

pitch of the field lines is decreased, the simulations exhibit a transition from the first regime to the second,

while the third—the drift-wave regime—is likely accessible to the experiments only at very low

collisionalities.
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Simple magnetized torus (SMT) experiments confine a
toroidal plasma with a helical magnetic field [1–3]. This
configuration has been of long-standing interest to the
plasma turbulence and fusion communities for two main
reasons. First, it offers a simple and well-diagnosed testbed
in which to study the basic physics of plasma turbulence
and the associated transport of heat and particles. Second,
by virtue of its dimensionless parameters and magnetic
geometry, it provides a simplified setting in which to ex-
plore one of the most currently important topics in fusion
research: the physics of turbulent transport in the edge
region of magnetically confined fusion devices such as
tokamaks. This topic is important because particles and
heat transport across the edge region of these machines
largely governs the fusion power output of the entire device
[4]. Perhaps more than any other issue, persisting uncer-
tainties related to edge transport continue to undermine our
ability to reliably predict the performance of future fusion
reactors such as ITER [5].

We present here, based on first-time global three-
dimensional fluid simulations of the SMT configuration,
a new theoretical understanding of turbulence in the SMT.
Our results call for a significant reinterpretation of SMT
observations and how they relate to magnetically confined
fusion devices. At the relatively high collsionalities typical
of the TORPEX experiment [2], the simulations reveal
three regimes of turbulence, each driven mainly by a dis-
tinct plasma instability: an ideal interchange mode regime,
a previously undiscovered resistive interchange mode re-
gime, and a drift-wave (DW) regime. The DW regime, pre-
viously assumed to dominate the SMT plasmas as the pitch
of the field lines is decreased [6] and long regarded as im-
portant to the fusion-relevancy of the SMT concept [7], is
in fact found here to be accessible to the experiments only
at very low collisionalities. Rather, we find the low pitch
regime in TORPEX is dominated by resistive interchange
modes, the existence of which in the SMT, due to the global
nature of our simulations, is recognized here for the first
time. As discussed later, resistive interchange modes are

very similar to resistive ballooning instabilities, which are
believed to control plasma transport in the far edge (the
‘‘scape off layer’’ or SOL) of tokamaks and similar devices
[8]. Since the magnetic geometry and parallel boundary
conditions of tokamaks and SMTs are also most similar in
this far-edge region, we believe our new findings preserve,
if not enhance, the fusion relevancy of SMTs.
The most obvious difference between ideal interchange

turbulence and turbulence driven by either resistive inter-
change or DW instabilities is the wave number along the
magnetic field: kk ¼ 0 in the former case, while kk � 0 in

the latter. Considering, for example, the observations of
SMT turbulence in the TORPEX device [2], the transition
from kk ¼ 0 ideal interchange mode dominated turbulence

to a finite kk � 0 state is clearly observed as the pitch of the
field lines is decreased [6]. The pitch can be expressed in
terms of N ¼ LvB’=ð2�RBvÞ, the total number of field

line turns from the bottom of the SMT to the top, where R
and Lv are the vessel major radius and height, Bv and B’

are the vertical and toroidal components of the magnetic
field. The pitch decreases as N is increased, and the onset
of kk � 0 fluctuations is observed for sufficiently large N.

In Fig. 1, the vertical mode number l (corresponding to a
vertical wave number kv ¼ 2�l=Lv) is plotted as a func-
tion of N. The kk ¼ 0 regime, in which l ¼ N, is observed

for small N & 7. The dominant toroidal mode number in
this case is n ¼ 1—the expected value given kk ¼ 0 and
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FIG. 1 (color online). l for the turbulence described in
Refs. [6].
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l ¼ N, as we show later. For N * 7 the turbulence tran-
sitions to a state dominated by l ¼ 1 fluctuations (one
wavelength in the vertical direction from bottom to top),
which corresponds to a small but finite kk ’ 1=ðRNÞ. The
dominant toroidal mode number in this regime is n ¼ 0—
that is, the turbulence becomes toroidally symmetric.

These TORPEX observations are in agreement with our
findings, which indicate the presence of (i) an ideal inter-
change regime characterized by kk ¼ 0, l ¼ N, and n ¼ 1,
(ii) a resistive interchange regime with kk � 0, n ¼ 0, and
l ¼ 1, and (iii) a DW regime that is obtained for suffi-
ciently steep gradients Lp < Lp;crit and is characterized by

very short vertical wavelengths, k?�s � 0:5. At the rela-
tively high collisionalities of the TORPEX experiments,
however, our simulations suggest the transport driven by
interchange modes prevents the gradient scale lengths from
ever steepening into the DW dominated regime. This situ-
ation is similar to that observed in the far-edge region of
tokamaks [8], in which resistive interchange (ballooning)
modes rather than DW dominate the transport even in the
most weakly collisional cases (H modes). The behavior of l
in Fig. 1 therefore reflects a transition from ideal to resis-
tive interchange turbulence.

Resistive interchange modes in the SMT are similar to
resistive ballooning modes in the edge region of tokamaks:
they have maximum growth rates comparable to the ideal
interchange mode �2 � c2s=ðRLpÞ and occur when the

conductivity is sufficiently small. The instability threshold
follows from the vorticity equation [Eq. (2)]: the polariza-
tion drift term @tr2

?� must exceed the line bending term

proportional to rkjk; with Ohm’s law [Eq. (5)], jk �
��krk�, this condition yields �k2? > 4�V2

Ak
2
k�k=c2.

Because kk ¼ 1=ðNRÞ, line bending becomes negligible

for sufficiently high N—the reason resistive interchange
modes are limited to higher N. Since k? � 2�=Lv (l ¼ 1),
the numerical study of such modes requires global simu-
lations that cover the entire SMT domain like those de-
scribed here. This explains why resistive interchange mode
turbulence was overlooked in all previous, nonglobal simu-
lation studies of the SMT (e.g., [9,10]), which were re-
stricted to flux-tubes of vertical extent Lv=N. Although the
simulations reported here agree with these earlier works in
the low N ideal interchange regime, at higher N the ab-
sence of resistive interchange modes in the flux-tube based
work led to artificially low transport and turbulence levels.
Further discussion of this issue is given below.

Following the TORPEX parameters, we use the drift-
reducedBraginskii equations [11] with Ti�Te and ��1:
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where pe ¼ nTe, ½a; b� ¼ @xa@yb� @ya@xb, jk ¼
enðVki � VkeÞ, �ci ¼ eB=ðmicÞ, and Sn and ST are the

density and temperature sources. The x coordinate denotes
the radial direction, z is parallel to B, and y is the direction
perpendicular to x and z (for Bv � B’ the vertical and y

directions are approximately the same).
We solve Eqs. (1)–(5) on a field-aligned grid using a

finite difference scheme with Runge-Kutta time stepping
and small numerical diffusion terms. The computational
domain has an annular shape with a cross section x ¼ 0 to
x ¼ Lx and y ¼ 0 to y ¼ Ly. At x ¼ 0 and x ¼ Lx,

Dirichelet boundary conditions are used for n, Te, �, and
r2

?� and Neuman boundary conditions for Vke and Vki. At
y ¼ 0 and y ¼ Ly, for the parallel velocities we use Bohm

boundary conditions Vki ¼ �cs and Vke ¼ �cs expð��
e�=TeÞ, with � ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=ð2�meÞ

p
; at the same location,

we have explored both Dirichelet and Robin boundary
conditions for n and Te, and for � we use both e� ¼
�Te (implying Vke ¼ Vki) and a boundary condition of the
form @y� / ðe���TeÞ, all with similar results for the

parameters explored here. The profiles of Sn and ST mimic
the EC and UH resonance layer in TORPEX, and are
assumed to have the form SEC exp½�ðx� xECÞ2=
�2
EC� þ SUH exp½�ðx� xUHÞ2=�2

UH� [12]. The parameters

used in the simulations are SUH=SEC ¼ 1:5, �UH ¼ 5�s,
�EC ¼ 2:5�s, xUH ¼ 35�s, xEC ¼ 15�s, mi=me ¼ 200,
� ¼ 3, R ¼ 200�s, Lx ¼ 100�s, and Ly ¼ 64�s.

The n and Te profiles steepen due to the sources until
turbulence is triggered, leading to transport from the source
region to the low-field side. The typical character of the
turbulence observed for low N and low plasma resistivity
� ¼ e2n=ðmi�kÞ is shown in Fig. 2. The turbulence is

driven by the ideal interchange mode with kk ¼ 0 and a

vertical wavelength determined by the return of the field
line in the poloidal plane, ky ¼ 2�N=Lv. The vertical

mode number satisfies l ¼ N and the toroidal cut shows
a toroidal mode number n ¼ 1. The consistency of n ¼ 1,
kk ¼ 0, and l ¼ N follows from kk ¼ k � b ¼ kvBv=Bþ
k’B’=B. Given Bv=B’ ¼ Lv=ð2�RNÞ, kk may be written

in terms of the vertical mode number l (kv ¼ 2�l=Lv), the
toroidal mode number n (k’ ¼ �n=R), and the parallel
mode number m [kk ¼ m=ðNRÞ] as m=ðNRÞ ¼ ðB’=BÞ�
½l=ðNRÞ � n=R� or, assuming B’ ’ B for small Bv, asm ’
l� nN. The dominance of kk ¼ 0 fluctuations at low N is
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consistent with experimental observations in TORPEX [6],
Helimak [13], and BLAAMAN [3], and has been previ-
ously explored with numerical simulations in two-
dimensions [10]. When N or � are increased, however,
the turbulence enters a new regime shown in Fig. 3, in
which the dominant mode is toroidally symmetric (n ¼ 0),
kk � 0, and the typical vertical wavelengths are compa-

rable to the height of the machine, ky ¼ 2�=Lv (l ¼ 1).
The character of these simulations agree with the high N
TORPEX experimental observations in Fig. 1.

The linear stability analysis of Eqs. (1)–(5) provides an
explanation of these results. In Fig. 4 we show the vertical
mode number l of the fastest growing instability, maxi-
mized over all possible values of l ¼ �1;�2; . . . and n ¼
0;�1;�2; . . . (and m ¼ l� nN). We consider 	 ¼
Ln=LT ’ 1. Indicative TORPEX parameters are repre-
sented by the center plot of Fig 4: �� 0:1cs=R, Lv �
64�s, and Ln=R ’ 0:14. Consistent with both our numeri-
cal simulations and the experimental results, when N * 10
the dominant instability in the system makes a transition
from l ¼ N to l ¼ 1.

At least four instabilities are present in the linear dis-
persion relation. The ideal interchange mode has a flutelike
character with kk ¼ 0, i.e. m ¼ 0. Since m ’ l� nN ¼ 0,
the vertical and toroidal mode numbers l and n are related
by l ¼ nN. In the kk ¼ 0 limit the linear dispersion rela-

tion of Eqs. (1)–(5) becomes ðb0 þ b1�þ b2�
2 þ

b3�
3Þ ¼ 0, with b0 ¼ 20i!2

dð2!d �!�Þ=3, b1 ¼

20ðk2y�2
s � 1Þ!2

d=3þ 2ð	þ 1Þ!�!d, b2 ¼ 20i!dk
2
y�

2
s=3,

b3 ¼ �k2y�
2
s , !d ¼ ky�scs=R, and !� ¼ ky�scs=Ln. The

peak growth rate occurs for ky ! 0, and is given by � ¼ �I

with �I ¼ cs½2=ðRLpÞ � 20=ð3R2Þ�1=2. (The stabilizing

contribution comes from curvature-driven plasma com-
pressibility terms in Eqs. (1) and (3), typically small in
the tokamak edge where Lp � R). Stabilizing contribu-

tions associated with finite ky�s become important for

ky�s * 0:3R�I=cs. The fastest growing mode is thus

achieved at the smallest allowed value of ky ’ 2�l=Lv,

which given l ¼ nN is l ¼ N for toroidal mode number
n ¼ 1, i.e. ky ¼ 2�N=Lv. With this ky, the ky�s condition

ky�s * 0:3R�I=cs can be written as 
? * 1 where 
? ¼
2�N�scs=ð0:3LvR�IÞ. The condition 
? ¼ 1 is repre-
sented by the white lines in Fig. 4; the regions near and
below these curves, 
? & 1, are thus favorable for ideal
interchange modes with l ¼ N. Figure 2 reflects the typical
character of the ideal interchange regime.
The second instability present in the system is the re-

sistive or electron inertia-driven interchange mode. We
consider the limit �I 	 kkcs in which sound wave cou-

pling may be neglected, and ky�s < 0:3R�I=cs, which is

typically well satisfied for the low ky � 2�=Lv values of

interest in this case. The linear dispersion relation thus
reduces to �2 ¼ �2

I � �k2kc
2
s=ðk2y�2

s �̂Þ, �̂ ¼ �þ �me=mi.

The peak growth rate occurs for kk ! 0 and is � ¼ �I. For

finite kk, � decreases with kk until stability is reached for

k2kc
2
s � 2k2y�

2
s�I�̂. Given m ’ l� nN, the longest nonzero

parallel wavelength, m ¼ 1, is achieved for n ¼ 0 and l ¼
1. Although the growth rate of this mode is reduced by
finite kk effects below the maximal value of � ¼ �I at

FIG. 2 (color online). Snapshot of � in two poloidal cross
sections and in a toroidal plane for N ¼ 2, � ¼ 0:01cs=R.

FIG. 3 (color online). As in Fig. 2, for N ¼ 16, � ¼ 1cs=R.

0.05 0.15 0.25

10

20

30

40

50

N

 

 

2

4

6

8

0.05 0.15 0.25
2

4

6

8

10

12

14

 

 

1

2

3

4

0.05 0.15 0.25
2

4

6

8

10

12

 

 

0.5

1

1.5

2

0.05 0.15 0.25

20

40

60

N

 

 

10

20

30

0.05 0.15 0.25

5

10

15

20

25

30

 

 

5

10

15

0.05 0.15 0.25

5

10

15

20

 

 

2

4

6

8

10

0.05 0.15 0.25

20

40

60

L
n
/R

N

 

 

20

40

60

0.05 0.15 0.25

10

20

30

40

50

L
n
/R

 

 

10

20

30

0.05 0.15 0.25

10

20

30

40

50

L
n
/R

 

 

5

10

15

20

FIG. 4 (color online). Phase space diagram for Lv ¼ 16, 64,
128�s (top, center, bottom); � ¼ 0:0001, 0.1, 1cs=R (left, center,
right). mi=me ¼ 1836. The red line denotes 
k ¼ 1, white is


? ¼ 1, magenta is �DW ¼ 0:5�. The black asterisk indicates
the nonlinear simulation belonging to the DW regime.
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kk ¼ 0, this reduction becomes small for N 	 1 since

kk ¼ m=ðNRÞ is small. Moreover, for large N, the wave

number ky � 2�l=Lv is substantially smaller for the

resistive interchange mode (l ¼ 1) than for the ideal inter-
change mode (l ¼ N). With ky ¼ 2�=Lv and kk ¼
1=ðNRÞ, the stability condition of the resistive interchange
mode due to kk effects may bewritten as
k ¼ 1with
k ¼
½Lvcs=ð2�NR�sÞ�2=ð2�I�̂Þ. This condition is represented
by the red lines in Fig. 4. The regions near and above the
red curves correspond to 
k & 1 and are thus favorable for
resistive interchange modes. Figure 3 reflects the typical
character of this regime.

The third turbulence regime is dominated by DW. To
study the importance of DW, we turn off the interchange
drive: the curvature term in the vorticity Eq. (2). (We
retain, however, the curvature-driven plasma compressibil-
ity terms mentioned earlier, which are stabilizing for both
interchange and DW modes. At the small values of Lp=R

that are most relevant for DW, however, these terms have
only a small effect.) We again assume � 	 kkcs. We find

DW are stable at weak gradients: Lp=R * 3=10. Since the

maximum DW growth rates scale as ��!� � cs=Lp for

k?�s � 1, we expect them to dominate over interchange

modes (�� cs=
ffiffiffiffiffiffiffiffiffiffi
RLp

p
) when Lp=R � 1. In this limit, the

DW dispersion relation can be written as �̂k2y�
2
s�

2 þ
k2kc

2
sð1þ 2:94k2y�

2
sÞ�þ ð1þ 1:71	Þik2kc2s!� ¼ 0. For re-

sistive DW, � > �me=mi, the peak growth rate is �max
DW ’

0:085ð1þ 1:71	Þcs=Ln, observed for ky�s ’ 0:57, and

kk ’ 0:24½�=ðcsLpÞ�1=2, with a corresponding frequency

of !max
DW ’ 0:17ð1þ 1:71	Þcs=Lp. In the case of electron

inertia-driven DW, � < �me=mi, the peak growth rate is
�max
DW ’ 0:17csð1þ 1:71	Þ=Ln with a frequency !max

DW ’
0:25csð1þ 1:71	Þ=Ln, observed for ky�s ’ 0:57 and kk ’
ð0:2=LpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
. We identify the SMT DW regime by

comparing the largest growth rate � obtained from the
full dispersion relation to �DW, the linear growth rate in
the absence of the interchange drive (�DW is evaluated at
the same l and n as the maximum �). The regions to the left
of the magenta curves in Fig. 4 correspond to �DW * 0:5�,
and are favorable for DW. The location of this curve may
be estimated analytically with �max

DW * �I, which leads to
Ln;crit=R ’ 0:013 for � > �me=mi, and Ln;crit=R ’ 0:05 for
� < �me=mi. In the simulations, we were able to produce
DW dominated plasmas only at a value of the collisionality
that is at least 1 order of magnitude lower than typical
TORPEX experimental values. The nonlinear simulation
belonging to the DW regime is indicated by the black
asterisk in Fig. 4. At higher collisionalities, the interchange
mode driven transport prevents the plasma gradients from
ever steepening into the DW regime.

In contrast to TORPEX, the lower collisionality of typi-
cal Helimak argon discharges (� ¼ 0:0001cs=R, Lv �

100�s, Ln=R� 0:1 [1]) leads to a substantially increased
resistive interchange mode threshold, N � 300–400, that
lies well above the 
? limit (typically N � 25–50). For N
values between the two, as shown in the low � and high Lv

case of Fig. 4, the fastest growing instability predicted by
our linear analysis is an electrostatic non-MHD drift-
interchange mode with an adiabatic electron response
and �� �I for ky�s � 1. The transport properties of this

mode will be explored in future work.
In the parameter space explored here, the equilibrium

sheared flows have at most a weak stabilizing effect on the
turbulence. In Refs. [9,10], however, it was predicted,
within the framework of two- and three-dimensional flux-
tube simulations, that the strength of the sheared flows
could be increased: (i) by increasing N or �, or (ii) by
increasing the strength of the sources. In the former case,
the present simulations call into question the conclusions
of the earlier works, since the resistive interchange mode
was absent. In the case of stronger sources, our global
simulations suggest that the strength of shear flow is sen-
sitive to the boundary conditions at the upper and lower
walls. More work is needed to reliably capture these
boundary conditions.
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