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Away to identify the would-be zero modes of staggered lattice fermions away from the continuum limit

is presented. Our approach also identifies the chiralities of these modes, and their index is seen to be

determined by gauge field topology in accordance with the index theorem. The key idea is to consider the

spectral flow of a certain Hermitian version of the staggered Dirac operator. The staggered fermion index

thus obtained can be used as a new way to assign the topological charge of lattice gauge fields. In a

numerical study in U(1) backgrounds in two dimensions it is found to perform as well as the Wilson index

while being computationally more efficient. It can also be expressed as the index of an overlap Dirac

operator with a new staggered fermion kernel.
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The computational efficiency and other attractive fea-
tures of the staggered lattice fermion formulation made
possible the first high-precision lattice simulations of quan-
tum chromodynamics (QCD) [1], and it continues to be
widely used. However, this formulation has long been
perceived as disadvantaged compared to Wilson fermi-
ons—the other traditional lattice fermion formulation—
regarding topological aspects of QCD. This concerns, in
particular, the index theorem [2] relating gauge field topo-
logical charge to fermionic zero modes, which is needed to
explain the large mass of the �0 meson [3]. A field-
theoretic approach to the staggered fermion index was
developed and used by Smit and Vink [4,5]; however, it
does not give an integer value for the index from the
beginning and requires a renormalization that depends on
the full ensemble of lattice gauge fields. In contrast, for
Wilson fermions, an integer-valued index is obtained with-
out any need for renormalization. This is because Wilson
fermions have identifiable would-be zero modes with defi-
nite chirality, provided the lattice gauge field is not too
rough, from which the index can be defined. The Wilson
fermion index [4,6,7], calculated from its equivalent de-
scription as the index of the overlap Dirac operator [8], is
currently widely used for issues such as calculation of the
topological susceptibility [9] and investigations of topo-
logical structure in the QCD vacuum—see, e.g., [10]. But
for staggered fermions it has not been known how to
identify the would-be zero modes and their chiralities in
nonsmooth gauge field backgrounds; they were only seen
to emerge in simulations with improved actions that are
sufficiently close to the continuum [11].

In this Letter we show how the would-be chiral zero
modes of staggered fermions can be identified away from
the continuum limit when the background gauge field is not
too rough, thus determining an integer-valued index. A
theoretical foundation for the index theorem for staggered
fermions is established, placing them on the same footing
as Wilson fermions in this regard.

Our new approach in the staggered case parallels the
spectral flow approach to the index theorem for continuum
and Wilson lattice fermions [6,7], which we begin by
briefly reviewing in the following. Spacetime is taken to
be a Euclidean box with periodic boundary conditions (the
setting in which Lattice QCD simulations are performed)
with even dimension d. Besides the physically relevant
case d ¼ 4 we will also consider d ¼ 2 for illustrative
purposes. From the Hermitian Dirac gamma matrices

f��g�¼1;...;d the chirality matrix �5 ¼ �ðiÞd=2�1 � � ��d is

defined. It has the properties �y
5 ¼ �5, �

2
5 ¼ 1, f�5; ��g ¼

0 and f�5; Dg ¼ 0 where D ¼ ��ð@� þ A�Þ is the contin-
uum massless Dirac operator on spinor fields coupled to a
gauge field A. Consequently, the vector space of zero
modes of D (i.e., solutions to Dc ¼ 0) decomposes into
� chirality subspaces on which �5 ¼ �1. The index of D
is the difference between the numbers n� of independent
� chirality zero modes, and is fixed by topology: Gauge
fields with smooth field tensor F��ðxÞ have an integer

topological charge Q, and the index theorem in this setting
states

nþ � n� ¼ ð�1Þd=2Q: (1)

The spectral flow perspective on the index arises by con-
sidering the eigenvalues f�ðmÞg of the Hermitian operator

HðmÞ ¼ �5ðD�mÞ (2)

as a function of the parameter m. Note that a zero mode c
of D with � chirality is also an eigenmode of HðmÞ with
eigenvalue �ðmÞ ¼ �m, crossing the origin with slope�1
at m ¼ 0. Furthermore, from the property

HðmÞ2 ¼ DyDþm2 (3)

we see that these are the only eigenvalues of HðmÞ that
cross the origin at any value of m. It follows that the
spectral flow of HðmÞ, defined as the net number of eigen-
values �ðmÞ of HðmÞ that cross the origin, counted with
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sign � depending on the slope of the crossing, comes
entirely from eigenvalue crossings at m ¼ 0 and equals
n� � nþ, i.e., minus the index.

In the lattice setting with Wilson fermions, the would-be
zero modes can be identified as the low-lying real eigen-
values of the Wilson-Dirac operator DW [4,12]. The spec-
tral flow perspective [6,7] is based on the Hermitian lattice
analogue of (2):

HWðmÞ ¼ �5ðDW �mÞ: (4)

Regarding the spectral flows HWðmÞc ðmÞ ¼ �ðmÞc ðmÞ,
note that �ðm0Þ ¼ 0 , DWc ðm0Þ ¼ m0c ðm0Þ. Thus ei-
genvalue crossings of HWðmÞ are in one-to-one correspon-
dence with real eigenvalues of DW . Furthermore, after
normalizing eigenmodes such that c yc ¼ 1 one easily
finds �0ðmÞ ¼ �c ðmÞy�5c ðmÞ [6]. Thus the sign of the
slope of �ðmÞ at a low-lying crossing valuem0 is minus the
chirality of the corresponding would-be zero mode c ðm0Þ
for DW . It follows that the index of DW is minus the
spectral flow of HWðmÞ coming from the eigenvalues
which cross the origin at low-lying values of m. Nu-
merical results illustrating this can be found, e.g., in [6].
An illustration in the d ¼ 2 case is given in Fig. 4 below.

Turning now to staggered lattice fermions, where the
lattice field �ðxÞ is scalar (rather than spinor) and describes
2d=2 degenerate continuum fermion species (called quark
tastes), the massless staggered Dirac operator is

Dst ¼ ��r�; (5)

where r� is the usual lattice finite difference operator

coupled to the lattice gauge field and ���ðxÞ ¼
ð�1Þn1þ...þn��1�ðxÞ where x ¼ aðn1; . . . ; ndÞ runs over the
lattice sites. Dst is anti-Hermitian and therefore has purely
imaginary spectrum. Consequently, the identification of
would-be zero modes in the Wilson case does not carry
over to the staggered case since it relied crucially on the
role of nonzero real eigenvalues. For the same reason it is
clear that an index of Dst cannot be obtained from spectral
flow of a staggered version ofHWðmÞ. In fact the staggered
analogue of (4), �5ðDst �mÞ, is not even Hermitian.
However, there is an alternative spectral flow approach
which we now discuss, and which turns out to be perfectly
suited to the staggered case.

Return momentarily to the continuum setting and note
thatHðmÞ in (2) is not the only Hermitian operator that can
be used for the spectral flow perspective on the index. We
could just as well use HðmÞ ¼ iD�m�5. Its spectral flow
is equal to minus the index of D just as before, since the
previous argument, including the property (3), holds ver-
batim for this operator. But now the analogue in the stag-
gered case,

HstðmÞ ¼ iDst �m�5 (6)

is also Hermitian, so we can consider its spectral flow as
well. Here �5 is the analogue of �5 in the staggered
formulation; it is Hermitian and corresponds up to OðaÞ

discretization errors to �5 � 1 in the spin-flavor interpre-
tation [13]. Note that Hstð0Þ ¼ iDst, so the eigenvalues of
Dst are f�i�ð0Þg where f�ðmÞg are the eigenvalue flows of
HstðmÞ. This fact allows us to identify the would-be zero
modes of Dst: as shown below, they are the eigenmodes
with eigenvalues �i� ¼ �i�ð0Þ for which the associated
flow �ðmÞ crosses zero at a low-lying value of m.
Furthermore, the sign of the slope of the crossing is minus
the chirality of the would-be zero mode, and hence the
index is minus the spectral flow ofHstðmÞ coming from the
crossings at low-lying values of m.
To see this, consider first the situation in a smooth

continuumlike gauge field background: The eigenvalues
�i� of the would-be zero modes � of Dst separate out
from the rest of the spectrum; they are almost zero and
have approximately definite chirality �y�5� � �1. For
the corresponding eigenvalue flows �ðmÞ of HstðmÞ we
have �0ðmÞ ¼ ��ðmÞy�5�ðmÞ just as in the Wilson case.
Since � ¼ �ð0Þ it follows that �0ð0Þ � �1, and since � ¼
�ð0Þ is almost zero it then follows that �ðmÞ crosses the
origin at a very small (in magnitude) value m0 of m.
Whetherm0 is positive or negative depends on the chirality
and sign of �ð0Þ, but in either case the sign of the slope of
the crossing is the same as that of �0ð0Þ, i.e., minus the
chirality. Under a roughening of the gauge field the loca-
tion of a crossing will move, but it cannot disappear until it
meets another crossing with opposite slope. Hence the
would-be zero modes remain identifiable with unchanged
chiralities and index.
To illustrate the identification of the staggered would-be

zero modes and their index we present results of a numeri-
cal study in U(1) backgrounds in two dimensions.
Following [4] we start from specific smooth lattice gauge
fields with topological charge Q and roughen them by
multiplying the link variables by random phase factors:

U�ðxÞ ! eir�ðxÞ�U�ðxÞ with each r�ðxÞ randomly chosen

in [��, �]; the parameter � controls the roughness. Our
numerical computations were all on the 12� 12 lattice (as
in [4]) and done using ARPACK [14]. The code was checked
by reproducing the results in Table 1 of [4].
Figure 1 shows low-magnitude eigenvalues of HstðmÞ

versus m (horizontal axis) in a Q ¼ 1 background of
moderate roughness � ¼ 0:33. The low-magnitude eigen-
values of iDst are the eigenvalues at m ¼ 0 in the figure.
There is no clear separation in their magnitudes. Nor is
there a clear separation in the magnitudes of the chiralities
as measured by �y�5�: numerical calculation of this
quantity for the 3 pairs of eigenmodes with lowest-
magnitude eigenvalues gives �0:28, þ0:17, þ0:13.
Nevertheless, the would-be zero modes can now be iden-
tified among these low-magnitude modes: as discussed
above, they are precisely the eigenmodes whose eigenval-
ues � ¼ �ð0Þ belong to eigenvalue flows �ðmÞ which cross
zero at a low-lying value of m. From the figure we see that
there are two of these, both with positive slope, corre-
sponding to negative chirality. Thus the index is �2. This
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is in accordance with the index theorem, since in the
staggered fermion case (1) becomes

index ðDstÞ ¼ 2d=2ð�1Þd=2Q: (7)

As a second illustration, Fig. 2 shows the eigenvalue flow
in a Q ¼ �2 background of the same roughness level � ¼
0:33. From the eigenvalues at m ¼ 0 we see that iDst ¼
Hstð0Þ has one eigenvalue pair of much smaller magnitude
than the others. Numerical calculation of �y�5� for these
givesþ0:34 compared toþ0:21,þ0:13 for the eigenmode
pairs with the next two lowest-magnitude eigenvalues.
Hence we would naively expect the first pair to be the
would-be zero modes, giving indexþ2. However, from the
eigenvalue flows we see that there is in fact one more pair
of would-be zero modes ofDst, also with positive chirality,
giving indexþ4 in accordance with the index theorem (7).

A crucial property that would-be zero modes of a lattice
fermion formulation should have is robustness: they should
not disappear under small deformations of the gauge field.
This is assured in the present case if there is a clear
separation between low- and high-lying crossing regions.
Figure 3 shows the eigenvalue flow of HstðmÞ in the same
background as Fig. 1 but over a largerm range. We see that
the eigenvalue crossings only occur in a localized region
around m ¼ 0 and in high-lying regions, jmj * 9 in this
case. The large separation between low-lying and high-
lying crossings illustrates the robustness of the would-be
zero modes and index for staggered fermions. For com-
parison, Fig. 4 shows the eigenvalue flow of the Hermitian
Wilson operator HWðmÞ in the same gauge field back-

ground. It has one low-lying positive-slope crossing in
accordance with the index theorem, and the high-lying
crossings are localized around m ¼ 2 and m ¼ 4 as ex-
pected on theoretical grounds [6,15].
As in the Wilson case [15], separation between low- and

high-lying crossing regions can be proved analytically
when the plaquette variables of the lattice gauge field
satisfy the approximate smoothness condition k1�
U��ðxÞk< 	 for sufficiently small 	 [16]: We derive in

[17] a bound of the form

HstðmÞ2 �
�
m2 � Kðm; dÞ	 for jmj 	 1
1� Kðm; dÞ	 for jmj � 1

(8)

(which is found to be saturated in the free field case where
	 ¼ 0). The precise form of Kðm; dÞ � 0 is not important
here, only the fact that it depends continuously on m,
which ensures that K0 defined in the following is finite.
For any b1, b2 with 0< b1 < 1< b2 set K0 ¼
maxfKðm; dÞjjmj 	 b2g and 	0 ¼ b2

1

K0
, then the bound (8)

impliesHstðmÞ2 > 0 for b1 	 jmj 	 b2 when 	 < 	0 in the
plaquette condition. This shows that the separation be-
tween low-lying (jmj< b1) and high-lying (jmj> b2) ei-
genvalue crossing regions can be made arbitrarily large by
taking 	 > 0 to be sufficiently small.
The performance of the staggered index compared to the

Wilson index was investigated in the numerical study with
Q ¼ 1. For each randomly generated fr�ðxÞg we examined

the would-be zero modes and index as the roughness
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FIG. 1. Staggered spectral flow in a Q ¼ 1 background.
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FIG. 3. Staggered spectral flow over a larger m range in same
background as Fig. 1.
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FIG. 2. Staggered spectral flow in a Q ¼ �2 background.
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FIG. 4. Wilson spectral flow in same background as Figs. 1 and
3.
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parameter � is increased. In both the staggered and Wilson
cases they were found to remain identifiable up to rough-
ness levels 0:33 	 � 	 0:41 (which easily exceeds the
limit � � 0:25 at which the field-theoretic approach to
the staggered fermion index was found to break down in
[4]). Furthermore, in all the backgrounds considered, the
breakdown value of � for staggered was found to be the
same as for Wilson up to differences �� ¼ �0:02 (which
favored staggered as often as Wilson). This suggests that
the staggered and Wilson indexes are accessing the same
topological content of the lattice gauge field. However, the
computational cost was roughly twice as much in the
Wilson case. This is as expected since d ¼ 2 Wilson
fermions have two spinor components.

Finally, we show that, analogously to the Wilson case,
the staggered fermion index can be obtained as the index of
the exact zero modes of an overlap Dirac operator Dov.
This is of practical as well as theoretical interest since the
Wilson fermion index is usually calculated in practice as
indexðDovÞ. The role of �5 in the overlap construction [8] is
not to be played by �5 here since it violates the required
property �2

5 ¼ 1 by an OðaÞ term. Instead we use

�55�ðxÞ ¼ ð�1Þn1þ...þnd�ðxÞ; (9)

which corresponds to �5 � �5 in the spin-flavor interpre-
tation [13]. We define the overlap Dirac operator with
staggered fermion kernel by

Dov ¼ 1

a

�
1þ �55

Hstðm0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hstðm0Þ2

p
�
: (10)

As in the Wilson case [8] Dov has exact zero modes, with
definite chirality with respect to �55, and satisfying an
index formula

index ðDovÞ ¼ � 1

2
Tr

�
Hstðm0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hstðm0Þ2

p
�
: (11)

which also follows from the general index formula in [18]
after noting that (10) satisfies the Ginsparg-Wilson relation
[18] with �5 ! �55. As in theWilson case we takem0 to be
in the region in between the positive low-lying and high-
lying eigenvalue crossings of HstðmÞ, then (11) gives

index ðDovÞ ¼ 1
2 indexðDstÞ: (12)

To see this, note that HstðmÞ�55 ¼ ��55Hstð�mÞ, which
implies a symmetry in the eigenvalue flow: HstðmÞ and
�Hstð�mÞ have the same spectrum (as seen in Figs. 1–3).
It follows that Hstð0Þ has symmetric spectrum; therefore
(11) is minus the spectral flow from m ¼ 0 to m ¼ m0,
which in turn is minus half the spectral flow from �m0 to
m0, i.e., half of indexðDstÞ.

The staggered overlap operator introduced here is of
independent interest as a new fermion formulation for
Lattice QCD, and will be studied in a separate paper
[17]. It has the remarkable feature of reducing the number

of staggered fermion tastes by half [as reflected in the
factor 1=2 in (12)]. The physical fields turn out to corre-
spond to the two continuum tastes with positive flavor
chirality under 1 � �5, so that �5 � �5 chirality is the
same as the physical �5 � 1 for them. A new staggered
version of domain wall fermions is also obtained [17].
In summary, staggered lattice fermions do maintain the

important index theorem connection between gauge field
topology and fermionic zero modes, but in a way that was
not realized previously. In the present d ¼ 2 study it was
seen to perform as well as the Wilson index, but with
greater numerical efficiency. Future work should investi-
gate the performance of the index for improved staggered
fermions versus Wilson index in backgrounds generated in
current Lattice QCD simulations in four dimensions.
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