
Unified Framework for Correlations in Terms of Local Quantum Observables

A. Acı́n,1,2 R. Augusiak,1 D. Cavalcanti,1 C. Hadley,1 J. K. Korbicz,3,4 M. Lewenstein,1,2 Ll. Masanes,1 and M. Piani5
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3Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland
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We provide a unified framework for nonsignalling quantum and classical multipartite correlations,

allowing all to be written as the trace of some local (quantum) measurements multiplied by an operator.

The properties of this operator define the corresponding set of correlations. We then show that if the theory

is such that all local quantum measurements are possible, one obtains the correlations corresponding to the

extension of Gleason’s Theorem to multipartite systems. Such correlations coincide with the quantum

ones for one and two parties, but we prove the existence of a gap for three or more parties.

DOI: 10.1103/PhysRevLett.104.140404 PACS numbers: 03.65.Ud, 03.67.Hk

Introduction.—Physical principles impose limits on the
correlations observed by distant parties. It is known, for
instance, that the principle of no-signalling—that is, the
fact that the correlations cannot lead to any sort of instan-
taneous communication—implies no-cloning [1] and no-
broadcasting [2] theorems, and the possibility of secure
key distribution [3]. Moving to the quantum domain, the
main goal of quantum information theory is precisely to
understand how quantum properties may be used for in-
formation processing. It is then important to understand
how the quantum formalism constrains the correlations
amongst distant parties. For instance, an asymptotically
convergent hierarchy of necessary conditions for some
correlations to have a quantum realization has been intro-
duced in Ref. [4] (see also Ref. [5]). All these conditions
provide nontrivial bounds to the set of quantum
correlations.

The standard scenario when studying correlations
consists of N distant parties, A1; . . . ; AN , who can perform
m possible measurements, each with r possible outcomes,
on their local systems. Denote by x1; . . . ; xN the measure-
ment applied by the parties and by a1; . . . ; aN the obtained
outcomes. The observed correlations are described by the
joint probability distribution Pða1; . . . ; aNjx1; . . . ; xNÞ, giv-
ing the probability that the parties obtain the outcomes
a1; . . . ; aN when performing the measurements x1; . . . ; xN .
In full generality, Pða1; . . . ; aNjx1; . . . ; xNÞ is an arbitrary
vector of mN � rN positive entries satisfying the normal-
ization conditions

P
a1;...;aN

Pða1; . . . ; aNjx1; . . . ; xNÞ ¼ 1

for all x1; . . . ; xN . These objects however become nontri-
vial if one wants them to be compatible with a physical
principle.

Indeed, imposing that the observed correlations should
not contradict the no-signalling principle, requires that the
marginal probability distribution observed by a group of

parties, say the first k parties, be independent of the mea-
surements performed by the remaining N � k parties.
Nonsignalling correlations, then, are such that

X

akþ1;...;aN

Pða1; . . . ; aNjx1; . . . ; xNÞ ¼ Pða1; . . . ; akjx1; . . . ; xkÞ;

(1)

for any splitting of the N parties into two groups.
Assume now that the correlations have a quantum origin,

i.e., they can be established by performing local measure-
ments on a multipartite quantum state. Precisely

PQ ¼ ftrð�Mx1
a1 � � � � �MxN

aN Þg; (2)

where � is a positive operator of unit trace acting on a
composite Hilbert space H A1

� . . . �H AN
, while Mxi

ai

are positive operators in each local space i defining
the m local measurements, i.e.,

P
ai
Mxi

ai ¼ 1Ai
; 8 xi. It

is well known that the set of nonsignalling correlations is
strictly larger than the quantum set [6].
Finally, there is the set of classical correlations, which

may be established by sharing classically correlated data,
denoted �. These correlations may be written in the form

PC ¼
�X

�

Pð�ÞDA1
ða1j�; x1Þ � � �DAN

ðaNj�; xNÞ
�
; (3)

where fDAi
g are deterministic functions specifying the

local results of party i as a function of the corresponding
measurement and the shared classical data �. The cele-
brated Bell theorem implies that the set of quantum corre-
lations is strictly larger than the classical one [7].
In this work, we provide a unified framework for all

these sets of correlations in terms of local quantum ob-
servables. Indeed, we show that each of these sets of
correlations can be written in the form
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PO ¼ ftrðOMx1
a1 � � � � �M

xN
aN Þg; (4)

where the operators Mxi
ai correspond to local quantum

measurements. By modifying the properties of O, it is
possible to generate the different sets of correlations.
Requiring that proper probabilities be derived from all
possible local quantum measurements imposes that the
operator O be positive on all product states. Namely, it
must be an entanglement witness, O ¼ W [8]. We then
show that while the corresponding set of correlations,
denoted PW , is equivalent to the quantum set for one and
two parties, a gap appears forN > 2. An implication of this
result is that the extension of Gleason’s Theorem to local
quantum measurements does not lead to quantum correla-
tions for an arbitrary number of parties.

Nonsignalling correlations.—Let us start by showing
how to write any nonsignalling probability distribution in
the form of Eq. (4) with a particular fixed set of measure-
ments. This is the content of the following theorem.

Theorem 1.—An N-partite probability distribution
Pða1; . . . ; aNjx1; . . . ; xNÞ is nonsignalling if, and only if,
there exist local quantum measurements Mxi

ai and a
Hermitian operator O of unit trace such that Eq. (4) holds.

Note that the operator O need not give positive proba-
bilities for other measurements.

Proof.—The ‘‘if’’ part is trivial, since the marginal dis-
tributions

P
a1;...;ak

trðOMx1
a1 � � � � �MxN

aN Þ are clearly inde-

pendent of x1; . . . ; xk. For the ‘‘only if’’ part, we show how
to obtain O and Mxi

ai for each nonsignalling distribution
Pða1; . . . ; aNjx1; . . . ; xNÞ.

We start by constructing the local measurements, which
may be taken, without loss of generality, to be the same for
each of the N parties. First, we take mðr� 1Þ vectors
j�x

ai 2 Cd, with a ¼ 1; . . . ; r� 1 and x ¼ 1; . . . ; m such
that the matrices j�x

aih�x
aj and the identity 1 are linearly

independent, as elements of the space of d� d Hermitian
matrices. This is always possible by taking a large enough
value of the dimension d, e.g., d ¼ maxðr;mÞ. Now we
choose a set of positive numbers zxa > 0 such that, for each
value of x, the matrix defined as

Mx
r ¼ I � Xr�1

a¼1

zxaj�x
aih�x

aj (5)

is positive semidefinite. This can always be achieved by
choosing sufficiently small zxa. For each value of x, the
matrices Mx

a ¼ zxaj�x
aih�x

aj (for a < r) and Mx
r (5) consti-

tute a local measurement.
The set of mðr� 1Þ þ 1 linearly independent matrices

f1;Mx
a:a ¼ 1; . . . r� 1; x ¼ 1; . . .mg ¼ fM1;M2; . . .g has

a dual set f ~M1; ~M2; . . .g, such that trðMi
~MjÞ ¼ �ij. Then,

the explicit construction of the operatorO for the caseN ¼
2 is

O ¼ Xr�1

a1;a2¼1

Xm

x1;x2¼1

Pða1; a2jx1; x2Þ ~Mx1
a1 � ~Mx2

a2

þ Xr�1

a1¼1

Xm

x1¼1

Pða1jx1Þ ~Mx1
a1 � ~1

þ Xr�1

a2¼1

Xm

x2¼1

Pða2jx2Þ~1 � ~Mx2
a2 þ ~1 � ~1: (6)

The marginal probabilities Pða1jx1Þ and Pða2jx2Þ are well
defined because Pða1; a2jx1; x2Þ is nonsignalling. Note
that, since the dual matrices ~Mx

a are, in general, not posi-
tively defined, neither isO. After some simple algebra, one
can see that this operator and the previous local measure-
ments reproduce the initial probability distribution accord-
ing to Eq. (4). It also follows directly from the construction
that O is Hermitian and trðOÞ ¼ 1.
The generalization to higher N is based on the fact

that nonsignalling distributions are characterized by
the numbers Pða1; . . . ; aNjx1; . . . ; xNÞ for ai < r, to-
gether with all the (N � 1)-party marginals [e.g.,
Pða2; . . . ; aNjx2; . . . ; xNÞ]. These marginals, being them-
selves nonsignalling distributions, are also characterized
by the entries with ai < r, plus all the (N � 2)-party mar-
ginals. Recursively, one arrives at the single-party margin-
als, which by normalization, are characterized by the
entries with ai < r too. h
As an illustration of the formalism, we give the explicit

form of the operator O and local measurements reproduc-
ing the Popescu–Rohrlich correlations (or ‘‘PR-box’’ [6]).
This represents the best known example of nonsignalling
correlations not attainable by quantum means, in which the
algebraic maximum of the Clauser–Horne–Shimony–Holt
inequality [9] is achieved. This distribution is defined to be
PPRða; bjx; yÞ ¼ 1=2 if xy ¼ aþ b mod 2, and 0 other-
wise, where a, b, x, y are now bits. In this case, the required
operator, which is surely not an entanglement witness,
reads O ¼ �þ�þ þ ����, where �� are the projectors

onto the Bell states j��i ¼ ð1= ffiffiffi
2

p Þðj00i � j11iÞ, and

�� ¼ ð1� ffiffiffi
2

p Þ=2; and the local observables are f�x; �yg
for Alice, and fð�x � �yÞ=

ffiffiffi
2

p
; ð�x þ �yÞ=

ffiffiffi
2

p g for Bob.
This theorem induces a hierarchical structure for the

different sets of correlations. By constraining the form of
O, it is possible to generate the sets of quantum and
classical correlations. Indeed, one can encapsulate all the
previous sets of correlations in the following statement.
The distribution Pða1; . . . ; aNjx1; . . . ; xNÞ is

(i) Nonsignalling if, and only if, it may be written in the
form of Eq. (4); (ii) Quantum whenever the operator O is
positive; (iii) Local if, and only if, O corresponds to a
separable quantum state [10].
Gleason’s Theorem for local quantum observables.—

Consider now a theory such that all possible local quantum
measurements are allowed. In this case, the operator O is
required to be positive on all product states, implying that it
must be an entanglement witnessW with trðWÞ ¼ 1. Thus,
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the corresponding set of correlations reads

PW ¼ ftrðWMx1
a1 � � � � �M

xN
aN Þg: (7)

Since W need not be positive, the set of correlations (7)
could be larger than the quantum set.

Interestingly, these correlations have already appeared
in several works studying the extension of Gleason’s
Theorem to local observables in N independent Hilbert
spaces. In what follows, we name the set of correlations
defined by Eq. (7) as Gleason correlations. Recall that
Gleason’s Theorem is a celebrated result in quantum me-
chanics proving that any map from generalized measure-
ments to probability distributions can be written as the
trace rule with the appropriate quantum state [11]. More
precisely: Let P ðH Þ be the set of operators M acting on
H such that 0 � M � 1. For any map v: P ðH Þ ! ½0; 1�
such that

P
ivðMiÞ ¼ 1 when

P
iMi ¼ 1, there is a positive

operator � such that vðMÞ ¼ trð�MÞ. A simple proof of
this theorem can be found in Ref. [12]. This theorem has
been generalized to the case of local observables acting on
bipartite [13] and general multipartite [14] systems. In the
same fashion, as the original theorem, the goal is now to
characterize those maps from N measurements—one for
each party—to joint nonsignalling probability distribu-
tions. It has been shown in these works that for each of
these maps, there is a witness operator W such that
vðM1; . . . ;MNÞ ¼ trðWM1 � . . . �MNÞ.

Theorem 2.—There exist Gleason correlations PW0 ¼
trðW 0�x1

a1 ��x2
a2 ��

x3
a3Þ (i.e., obtained by applying local

projective measurements �xi
ai on a normalized entangle-

ment witness W 0) that do not have a quantum realization,
i.e., such that there exist no quantum state � and local
measurements, Mxi

ai , in an arbitrary tripartite Hilbert space
satisfying PW0 ¼ trð�Mx1

a1 �Mx2
a2 �Mx3

a3Þ.
Proof.—To show that the set of Gleason correlations is

strictly larger than the quantum set, we construct a witness
and local measurements which lead to a violation of a Bell
inequality higher than the quantum one.

The Bell inequality we consider has been introduced in
Ref. [15] for the tripartite scenario in which the parties
apply two measurements each with two possible outcomes.
We label the choice of measurements and the obtained
results by bits. The inequality reads

� ¼ pð000j000Þ þ pð110j011Þ þ pð011j101Þ
þ pð101j110Þ

� 1: (8)

One can indeed prove that the values achievable through
classical and quantum means are at most unity; that is, the
inequality is not violated by quantum theory [15].

Moving to the definition of the operatorW 0, we consider
the witness which detects the three-qubit bound entangled
state of Ref. [16] based on unextendable product bases
(UPB). Recall that an unextendable product basis in a
composite Hilbert space of total dimension d is defined

by a set of n < d orthogonal product states which cannot be
completed into a full product basis, as there is no other
product state orthogonal to them. In Ref. [16], an example
of such a set of product states for three qubits was con-
structed. It consists of the following four states:

j000i; j1e?ei; je1e?i; je?e1i (9)

where fjei; je?ig is an arbitrary basis different from the
computational one. We denote by �UPB the projector onto
the subspace spanned by these states. One knows that the
state �UPB ¼ ð1��UPBÞ=4 is bound entangled. A nor-
malized witness W 0 detecting this state is given by

W 0 ¼ 1

4� 8�
ð�UPB � �1Þ; (10)

where � ¼ minj���ih���j�UPBj���i. One immediately

confirms that here 0< �< 1=2. Clearly, W 0 is positive on
all product states and detects �UPB since trðW 0�UPBÞ ¼
��=4ð1� 2�Þ which is negative for any � < 1=2.
Now, one can see that the witness W 0 when measured in

the local bases in the definition of the UPB (9) leads to
correlations such that

� ¼ 1� �

1� 2�
; (11)

which is larger than unity for 0< �< 1=2. h
This theorem, then, proves that the set of Gleason cor-

relations is strictly larger than the quantum set for N > 2.
The equivalence of these two sets in the bipartite scenario
N ¼ 2 has recently been shown in [17]. For the sake of
completeness, we present here a slightly simpler proof of
this result.
The Choi–Jamiołkowski (CJ) isomorphism implies that

any witnessW can be written as (1A1
��A2

) (�), where �

is a positive map and� is the projector onto the maximally
entangled state. Using the same techniques as in Ref. [18],
one can prove that any witness can also bewritten as (1A1

�
�A2

) (�), where� is now positive and trace preserving and

� is a projector onto a pure bipartite state. Denoting by��
the dual [19] of �, we have

tr ðWMx1
a1 �Mx2

a2Þ ¼ tr½ð1 ��Þð�ÞMx1
a1 �Mx2

a2�
¼ tr½�Mx1

a1 ���ðMx2
a2Þ�

¼ trð�Mx1
a1 � ~Mx2

a2Þ; (12)

where ~Mx2
a2 ¼ ��ðMx2

a2Þ defines a valid quantum measure-
ment because the dual of a positive trace-preserving map is
positive and unital, i.e. , ��ð1Þ ¼ 1.
Discussion.—There is an ongoing effort to understand

the gap between quantum and nonsignalling correlations.
As stated above, there exist correlations which, despite
being compatible with the no-signalling principle, cannot
be attained by local measurements on a quantum state. The
natural question is then to study why these supra-quantum
correlations do not seem to be observed in nature. Of
course, a trivial answer to this question is that there exist
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no positive operator and projective measurements in a
Hilbert space reproducing these supra-quantum correla-
tions via the Born trace rule. However, one would wish
for a set of ‘‘natural’’ principles with which to exclude
these supra-quantum correlations. These principles would
provide a better, or ideally the exact, characterization of
quantum correlations.

Most of the principles proposed so far to rule out supra-
quantum correlations have an information theoretic moti-
vation. The idea is that the existence of these correlations
would imply an important change in the way information is
processed and transmitted. It has been shown, for instance,
that communication complexity would become trivial if
the PR-box, or some noisy version of it, were available
[20], that some of these supra-quantum correlations violate
a new information principle called information causality
[21], or that they would lead to the violation of macro-
scopic locality [22]. Unfortunately, none of these prin-
ciples has been proven to be able to single out the set of
quantum correlations [23].

In this work, we introduce a unified mathematical for-
malism for nonsignalling and quantum correlations in
terms of local quantum observables. We expect this formal-
ism to be useful when tackling all such questions. It may be
easier using our construction to study how new constraints
may be added to the nonsignalling principle in order to
derive the quantum correlations. The methods developed
here may also be useful to study the degree of nonlocality
of quantum states, witnesses, and O-operators.

We have, then, considered Gleason correlations, defined
by nonsignalling theories in which all possible local quan-
tum measurements are possible. We have shown the pres-
ence of a gap between this set and the quantum set of
correlations for N > 2 parties. Thus, while the hypothesis
in Gleason’s Theorem for local observables completely
characterizes the set of bipartite quantum correlations
[17], the result does not extend to the multipartite scenario.
Clearly, the proof of equivalence in the bipartite case
exploits the existence of the CJ isomorphism. Actually, it
is easy to see that the equivalence holds for those N-party
entanglement witnesses that can be written

W ¼ X

k

pk½�k
A1

� � � � ��k
AN
�ð�kÞ; (13)

where �k are N-party quantum states, pk some probability
distribution, and �k

Ai
are positive, trace-preserving maps

and the number of terms in the sum is arbitrary. Our results
imply that this decomposition is not possible for all
N-party entanglement witnesses. It would be interesting
to better understand why the theorem fails in the multi-
partite scenario and identify additional requirements able
to close the gap.
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