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For driven Markovian dynamics on a network of (biomolecular) states, the generalized mobilities, i.e.,

the response of any current to changes in an external parameter, are expressed by an integral over an

appropriate current-current correlation function and thus related to the generalized diffusion constants. As

only input, a local detailed balance condition is required which is typically even valid for biomolecular

systems operating deep in the nonequilibrium regime.
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Introduction.—Close to equilibrium, transport coeffi-
cients like the mobility, conductivity or viscosity, quantify-
ing the response of a system to an external field or
perturbation, can be expressed by equilibrium correlation
functions. The Stokes-Einstein relation between the mo-
bility and the diffusion constant of a spherical particle is
arguably the oldest and best known example of such a
Green-Kubo relation [1]. Both mobility and diffusion con-
stant are still well-defined even for a nonequilibrium steady
state (NESS) of an open or driven system in which sta-
tionary currents lead to permanent dissipation. In such a
state, the Stokes-Einstein relation no longer holds true. The
difference between diffusion constant and mobility, how-
ever, can be expressed by an integral over an experimen-
tally measurable correlation function [2].

In the present Letter, we investigate the relation between
a mobility or transport coefficient and the corresponding
dispersion or fluctuations for any current in an arbitrary
driven system with special focus on biomolecular transport
like the one mediated by molecular motors or ion pumps.
The essential characteristics of such transport is that even
though the system is driven, typically by nonbalanced
chemical reaction involving nucleotides like ATP or
ADP, it takes place in a well-defined thermal environment.
This fact imposes a constraint on the ratio between forward
and backward rates for any mesoscopic transition that will
allow us to express the difference between mobility and
dispersion in a physically transparent way. On the technical
level, we build on the recent derivation of a general
fluctuation-dissipation theorem for NESSs [3–6]. By di-
rectly working in the NESS, our approach is complemen-
tary to work that invokes the fluctuation theorem for
deriving nonlinear response coefficients in higher order
expansions around equilibrium [7,8]. Moreover, it goes
beyond similar relations obtained for genuine diffusive
spatial transport [9,10] since we require no Euclidean
metric and hence the notion of a locally comoving frame
is not available. Our results will therefore be applicable not
only to any discrete model for a molecular motor or ion
pump (see, e.g., [11–14] and references therein) but also to
driven (bio)chemical reaction networks and their response

to changing chemical conditions [15,16]. As a simple
illustration will show, a misguided rewriting of our additive
relationship between mobility and dispersion in terms of a
multiplicative ‘‘effective temperature’’ could easily lead
even to negative values for the latter as found for various
active biomolecular systems, see, e.g., [17,18].
System.—We describe the system by a set of discrete

states fng. At time t, the system is in a state nðtÞ jumping at
discrete times tj from state nj

� to state nj
þ. A transition

between state m and state n occurs with a rate wmn. With
each transitionm ! n, we associate transport of a quantity
d�mn ¼ �d�nm leading to a microscopic current

j�ðtÞ �
X
j

�ðt� tjÞd�nj�njþ : (1)

The transition rates between the states depend on a set of
external parameters fh�g. We make no particular assump-

tions on the parameter dependence of the individual tran-
sition rates but only require that the ratio between forward
and backward rates obeys the typical ‘‘local detailed bal-
ance’’ (LDB) condition

wmnðfh�Þg
wnmðfh�gÞ ¼ wmnðf0gÞ

wnmðf0gÞ exp
�X

�

h�d
�
mn=T

�
; (2)

which implies for the logarithmic derivatives, or ‘‘sensi-

tivities,’’ r�mn � T@h� lnwmn, the crucial relation

r�mn � r�nm ¼ d�mn: (3)

Here, and throughout the Letter, we set Boltzmann’s con-
stant kB � 1. Examples for pairs of an external parameter
h� and a conjugate distance d� are (i) force f and spatial
distance d, (ii) chemical potential �� and number d� of
consumed (or, if negative, produced) molecules of type �
(like ATP and ADP) and (iii) potential difference �� and
transported electrical charge q. These choices are relevant
to molecular motors (i–ii) and ion pumps (ii–iii), respec-
tively. In all these cases, the LDB condition is usually
assumed not only for small deviations from equilibrium
but also for finite values of the fields fh�g.
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For constant external parameters fh�g, the system

reaches a stationary state in which pm � h�nðtÞmi denotes
the probability to find it in the particular state m.
Throughout the Letter, the angular brackets h� � �i denote
averages in this stationary state. If the system operates in a
genuine NESS at least one pair of directed probability
currents

Kmn � pmwmn � pnwnm ¼ �Knm (4)

is nonzero. Consequently, some of the currents have a
nonzero mean

j� � hj�ðtÞi ¼
X
mn

pmwmnd
�
mn ¼ X

mn

Kmnd
�
mn=2: (5)

We will need a second type of current derived from a
local variable

��ðtÞ ¼
X
m

�nðtÞm��
m with ��

m � X
k

Kmkr
�
mk=pm (6)

which could be called a ‘‘sensitivity-weighted’’ current. It
generalizes the mean local velocity found in this context
for Langevin systems [9] to arbitrary networks. Positive
contributions to ��ðtÞ arise from links for which the di-
rected probability current and the sensitivity have the same
sign. The dimension of ��ðtÞ justifies calling it a current.
Moreover, its mean is equal to the ordinary current since
h��ðtÞi ¼ P

mnKmnr
�
mn ¼ j� where we use (3) from above.

Generalized Green-Kubo relations.—The aim of gener-
alizing the Einstein or Green-Kubo relations to nonequi-
librium processes requires that we express both the
generalized diffusion constants, or dispersions, and the
generalized mobilities by correlation functions involving
currents. The dispersions given by

D�� � lim
t!1

1

2t

Z t

0
dt0

Z t

0
dt00h½j�ðt0Þ � j��½j�ðt00Þ � j��i

(7)

characterize the integrated fluctuations around the mean
currents. By isolating the diagonal in this double integral
and exploiting stationarity, we can rewrite the dispersions
as

D�� ¼
Z 1

0þ
dth½j�ðtÞ � j��½j�ð0Þ � j��i þDloc

��: (8)

The lower boundary 0þ at the integral indicates that no
deltalike contributions at t ¼ 0 should be picked up since
those are captured by the time-local contribution

Dloc
�� � lim

�!0
ð1=2�Þ

Z �=2

��=2
dthj�ðtÞj�ð0Þi (9)

¼ ð1=2ÞX
mn

pmwmnd
�
mnd

�
mn: (10)

The generalized mobilities ��� � @h�j� quantify the

dependence of the mean current on an external parameter.
As our main result, we will prove below that they can also
be expressed by an integral involving a correlation function
of the currents just introduced and a local term in the form

��� ¼
Z 1

0þ
dthj�ðtÞ½j�ð0Þ � ��ð0Þ�i=T þ �loc

�� (11)

where

�loc
�� � X

mn

d�mnpmwmnr
�
mn=T: (12)

Hence, the difference between the dispersion and mobility
tensors can be expressed as

I�� ¼ D�� � T��� ¼
Z 1

0
dthj�ðtÞð��ð0Þ � j�Þi þ Iloc��

(13)

with the local contribution

Iloc�� ¼ Dloc
�� � T�loc

�� ¼ �X
m<n

d�mnKmnðr�mn þ r�nmÞ=2;

(14)

where the notation
P

m<n indicates that each link is
counted only once.
In equilibrium, ��ð0Þ, j� and Kmn all vanish identically,

and hence I�� ¼ 0. Our representation makes the ‘‘viola-

tion’’ of the Einstein or Green-Kubo in a NESS apparent
and provides a physically transparent expression for the
difference between dispersions and mobilities.
Molecular motor.—As an illustration of the general

framework we consider any discrete state model of a
molecular motor. A transition from state m to state n
may either advance the motor a spatial distance dmn ¼
�dnm, or be associated with a chemical reaction of the typeP

�r
�
mnA� ! P

�s
�
mnA�, or contain both. The index � ¼ t,

d, p labels the chemical species ATP, ADP, and Pi, re-
spectively, and r�mn and s�mnð¼ r�nmÞ are the corresponding
stoichiometric factors for the forward and backward reac-
tion. For each transition and each species a ‘‘chemical
distance’’

d�mn � r�mn � s�mn ¼ r�mn � r�nm ¼ �d�nm; (15)

denotes the number of consumed (or, if negative, pro-
duced) molecules of type �. The chemical species are
provided at externally controlled concentrations c�. For
any motor and no applied external force (f ¼ 0) there are
concentrations ceq� at which the motor is in equilibrium
with its thermal and chemical environment. Assuming
ideal behavior, the concentrations are linked to the chemi-
cal potentials by�� ¼ �

eq
� þ T lnc�=c

eq
� . If, still at f ¼ 0,

the chemical potentials deviate from their equilibrium
value, the transition rates are modified according to the
usual mass action law kinetics,
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wmn ¼ w
eq
mn exp

X
�

���r
�
mn=T; (16)

where ��� � �� ��
eq
� . Note that the dependence of

these rates on the chemical potentials (h� ¼ ���) obeys
(3) which justifies a posteriori to denote the stoichiometric
coefficients by r�mn. We make no particular assumptions on
the force dependence of the individual transition rates but
require that the ratio between forward and backward rates
obeys, as usually assumed, the LDB condition

wmnðfÞ
wnmðfÞ

¼ wmnð0Þ
wnmð0Þ expðfdmn=TÞ: (17)

Hence, the sensitivities rmn � T@f lnwmn obey the relation

(3).
For a simple but still instructive specific example, we

consider a ‘‘one-state’’ ratchet model where the forward
rate (driven by ATP hydrolysis) and the backward rate
(synthesizing ATP from ADP and Pi) are given by

wþ ¼ w
eq
þ exp½ð��t þ f	þdÞ=T� (18)

and

w� ¼ weq� exp½ð��d þ ��p � f	�dÞ=T�; (19)

respectively. The load sharing factors 	þ and 	� with
	þ þ 	� ¼ 1 guaranteeing the LDB condition (3) are
related to the distance of the activation barrier in forward
and backward direction, respectively [12].

Since in this model all sites are physically equivalent but
only spatially translated a distance d, there are no current
correlations, so that only the local terms contribute. With
j ¼ dðwþ � w�Þ, the ordinary spatial mobility becomes
� � @fj ¼ d2½	þwþ þ 	�w��=T, and the corresponding
diffusion coefficient D ¼ ð1=2Þd2½wþ þ w��. The differ-
ence I ¼ �d2ðwþ � w�Þð	þ � 	�Þ=2 vanishes not only
in equilibrium (wþ ¼ w�) but even in a NESS for a
symmetric barrier (	þ ¼ 	� ¼ 1=2).

Expressed in terms of an effective temperature,

Teff � D=� ¼ T þ I=� ¼ Tð
þ 1Þ
2ð	þ
þ 1� 	þÞ ; (20)

where 
 � wþ=w�, one sees that for 0 � 	þ � 1, Teff=T
can acquire any value � 1=2. If we allow the somewhat
more extreme structural choice of 	þ > 1 (thus assuming
that both forward and backward steps are promoted with
increasing force) then even negative values of the effective
temperature become possible. Clearly, even this simple
example demonstrates that the idea of phenomenologically
characterizing active processes by an elevated ‘‘effective
temperature’’ is not really consistent. It rather conceals the
physically transparent additive relationship between mo-
bility and dispersion by replacing it with a multiplicative
factor.

Rather than looking at the response of the motor to a
changing applied force, one can ask for the response to a

change in concentration of ATP or ADP, i.e., to a change in
the chemical potential with h� � ��. For the current, we

can either choose the ordinary spatial current jðtÞ or the
current of consumed � molecules j�ðtÞ. How the corre-
sponding mean currents changewith the chemical potential
of � molecules is expressed by the mobility tensor ���

shown in Table I which includes the ‘‘cross’’ mobilities
between chemical and mechanical (here denoted by an
index f) distances and fields. We refrain from listing the
dispersions, which are in this case symmetrical with
D�� ¼ D��, and the corresponding effective temperatures

Teff
�� except for pointing out that the latter are asymmetric

and depend on the choice of indices even for fixed rates.
While the evaluation of mobilities and dispersions is

straightforward also for any more complex specific model
as will be illustrated elsewhere, a few universal statements
seem to be possible beyond the obvious ones referring to
equilibrium. As one example consider the observation
made in [11] for a particular two state motor model that
at stalling conditions, j ¼ 0 at f ¼ fs, the usual Einstein
relation between mobility and diffusion constant holds
true, even though idle chemical currents dissipate energy.
Our expressions (6), (13), and (14) show that, in general,
the validity of the Einstein relation requires not only that
j ¼ 0 but moreover that any link carrying a nonzero
probability current Kmn be not sensitive to the force f,
i.e., for any Kmn � 0, rmn ¼ rnm ¼ 0must hold. The latter
condition will not necessarily be met at stalling since even
pure chemical transitions with dmn ¼ 0 will, in general, be
affected by changing the applied force.
Proof of (11).—In the differential mobility

��� � @h�j� ¼ X
mn

d�mn@h�ðpmwmnÞ (21)

¼ X
mn

d�mnð@h�pmÞwmn þ �loc
�� (22)

the term @h�pm � @h�h�nðtÞmi must be expressed by a

correlation function. In [6] we have determined the re-
sponse of an observable at time t2 to a deltalike perturba-
tion at time t1. Specialized to the present quantities and
slightly adapting the notation, this relation reads

�h�nðt2Þmi
�h�ðt1Þ

��������fh�g¼const
¼ h�nðt2ÞmBðt1Þi; (23)

TABLE I. Generalized mobilities for the one-state motor.

T��� � f t d

�
f d2ð	þwþ þ 	�w�Þ dwþ �dw�
t dð	þwþ þ 	�w�Þ wþ �w�
d �dð	þwþ þ 	�w�Þ �wþ w�
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where the conjugate variable Bðt1Þ is given by

TBðt1Þ �
X
j

�ðt1 � tjÞr�n�j nþj �X
k

wnðt1Þkr
�
nðt1Þk (24)

¼ j�ðt1Þ þ
X
j

�ðt1 � tjÞr�nþj n�j �X
k

wnðt1Þkr
�
nðt1Þk; (25)

where we have used (1) and (3). If the correlation function

h�nðt2Þm
P

j�ðt1 � tjÞr�nþj n�j i is averaged over the states n�j
before the jump at t1 one gets

�
�nðt2Þm

X
j

�ðt1 � tjÞr�nþj n�j
�

(26)

¼
�
�nðt2Þm

X
k

pkwknðt1Þr
�
nðt1Þk=pnðt1Þ

�
: (27)

Putting together (23)–(27) and using (6), we can write

T
�h�nðt2Þmi
�h�ðt1Þ

��������fh�g¼const
¼ h�nðt2Þm½j�ðt1Þ � ��ðt1Þ�i: (28)

Thus the response of the current at the later time, j�ðt2Þ ¼P
nl�nðt2Þnd

�
nlwnl, to a deltalike perturbation at the earlier

time can be expressed as

T
�hj�ðt2Þi
�h�ðt1Þ

��������fh�g¼const
¼ hj�ðt2Þ½j�ðt1Þ � ��ðt1Þ�i: (29)

Integrating over the time-difference t2 � t1, we obtain our
main result (11).

Concluding perspective.—We have expressed the gener-
alized mobilities by current correlation functions for any
driven system described by a master equation with tran-
sition rates which obey a local detailed balance condition
as it should hold for transport in a well-defined thermal
environment. Without this condition one could still express
the mobility by an integral over some correlation function
as a minor modification of our proof would show. The
physically transparent connection to the dispersions em-
phasized here, however, would then be lost. Even though
our relation is remarkably reminiscent of the well-known
linear response result, a crucial difference should not go
unnoticed. For a nonequilibrium steady state as investi-
gated here, the relevant correlations involve a ‘‘sensitivity-

weighted’’ current. As an observable, the latter requires
knowledge of how the rates depend on the external pertur-
bation. While this is not an issue in any theoretical model-
ing, it will limit the direct application to those experimental
systems for which this property of the rates is accessible. In
the familiar linear response realm of the regular Green-
Kubo relations, such explicit knowledge is not necessary.
This observation might support the view that often the
quantitative evaluation of exact nonequilibrium relations
requires more specific input than their equilibrium counter-
parts do.
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