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The ground state of a spin-1=2 Heisenberg chain with both frustration and long-range interactions is

studied using Lanczos exact diagonalization. The evolution of the well-known dimerization transition of

the system with short-range frustrated interactions (the J1-J2 chain) is investigated in the presence of

additional unfrustrated interactions decaying with distance as 1=r�. It is shown that the continuous

(infinite-order) dimerization transition develops into a first-order transition between a long-range ordered

antiferromagnetic state and a state with coexisting dimerization and critical spin correlations at wave

number k ¼ �=2. The relevance of the model to real systems is discussed.
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One-dimensional spin systems have played an important
role in quantum many-body physics since the early days of
quantum mechanics [1,2]. Several different types of or-
dered and disordered ground states can be realized, de-
pending on the individual spin magnitude S and the form of
the spin-spin interactions [3–6]. For S ¼ 1=2, the proto-
typical Heisenberg chain with antiferromagnetic nearest-
neighbor interactions (coupling constant J1 > 0) has a
quasiordered (critical) ground state, with spin correlations

decaying with distance r as
ffiffiffiffiffiffiffiffiffiffi

lnðrÞp

=r [6]. Including a next-
nearest-neighbor coupling J2 > 0 (the J1-J2 chain [3])
leads to a quantum phase transition into a doubly degen-
erate dimerized state (a valence-bond-solid; VBS) at cou-
pling ratio g ¼ J2=J1 � 0:2411. In the effective field
theory for the S ¼ 1=2 chain [5], the VBS transition is
related to a sign change of a marginal operator. It has
been investigated in great detail numerically, using, e.g.,
exact diagonalization [7,8] and the density-matrix
renormalization-group (DMRG) method [9].

While long-range spin ordering is rigorously ruled out in
one-dimensional systems with finite-range rotationally in-
variant interactions, long-range interactions make mag-
netic order possible at zero temperature. The transition
between a long-range ordered antiferromagnet (AFM)
and the quasi-long-range ordered (QLRO) ground state
was recently investigated in a Heisenberg chain with in-
teractions of the form Jr / ð�1Þr�1=r� [10]. Here, the
signs correspond to no magnetic frustration, thus favoring
AFM ordering. For �< �c, the ground state possesses true
AFM long-range order, while for�> �c, the system is in a
QLRO phase, with the same critical form of the spin
correlations as in the standard Heisenberg chain. The criti-
cal value�c depends on details of the couplings (e.g., on J1
when all other Jr are fixed) and the exponents are contin-
uously varying. Another example of long-range interac-
tions is the celebrated Haldane-Shastry chain [11], with
frustrated interactions Jr ¼ 1=r2. This system has a critical
ground state similar to that of the standard Heisenberg

chain, but the marginal operator vanishes [12], and it is,
thus, a system right at the dimerization transition.
A natural question arising from previous work is how the

combined effects of frustration and long-range interactions
could lead to other phases and quantum phase transitions.
In particular, is it possible to realize a direct transition
between the AFM state and a VBS? In this Letter, the
evolution of the standard dimerization transition into an
AFM-VBS transition is explored by considering a frus-
trated J1-J2 chain with additional nonfrustrated long-range
interactions. The Hamiltonian for a finite periodic chain
with N spins S ¼ 1=2 is given by

H ¼ X

N=2

r¼1

Jr
X

N

i¼1

Si � Siþr; (1)

where the couplings are given by

J2 ¼ g; Jr�2 ¼ ð�1Þr�1

r�

�

1þ X

N=2

r¼3

1

r�

��1
: (2)

Here, the normalization is chosen such that the sum of all
nonfrustrated interactions jJrj equals 1 [13] (and J1 is also
given by the Jr�2 expression).
The model is here studied using Lanczos exact diago-

nalization. A semiquantitative phase diagram based on
these calculations in the plane (g, ��1) is shown in
Fig. 1. The J1-J2 chain corresponds to the horizontal axis
(��1 ¼ 0). The QLRO phase is here denoted QLROð�Þ,
with � indicating the wave number of the dominant spin
correlations. The phase boundaries are approximate, re-
sulting primarily from studies of level crossings, as will be
discussed below. The main focus of this initial study of the
model will be on the evolution of the QLROð�Þ-VBS
(dimerization) transition with decreasing �. It will be
shown that this continuous transition persists until � � 2,
while for smaller �, it evolves into a first-order transition
(of the avoided level-crossing type) between the AFM state
and a state with coexisting VBS order and critical spin
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correlations at wave-number k ¼ �=2, denoted in the
phase diagram as VBSþ QLROð�=2Þ.

The coexistence state is not purely of theoretical interest.
Recent ab initio calculations for metallic chains show
unfrustrated spin couplings decaying as �1=r2, with J2
in some cases frustrating (e.g., Mn) [14]. In the quasiclass-
ical (large-S) limit, spiral states with continuously varying
periodicity can arise in such a system. The present study
suggests a more exotic scenario in the extreme quantum
limit of S ¼ 1=2 (and perhaps also for other small S).

Solving the model (1) numerically poses significant
technical challenges. Efficient quantum Monte Carlo tech-
niques can be applied to systems with long-range interac-
tions [10,15], but with the frustrating J2 term, this is no
longer possible due to the sign problem [16]. The DMRG
method [17,18], on the other hand, can handle frustration
but not easily long-range interactions. Here, periodic
chains up to size N ¼ 32 are solved using Lanczos exact
diagonalization (in the standard way, exploiting lattice
symmetries and spin-inversion for block-diagonalization
in the magnetization mz ¼ 0 sector). This is sufficient for
roughly extracting the phase boundaries using level-
crossing methods (which in the case of the dimerization
transition is a well established technique [7], extended here
using different levels to detect other transitions).

The QLROð�Þ-VBS transition in the J1-J2 chain is of
infinite order, i.e., the singlet-triplet gap of the VBS is
exponentially small for g ! gc [5]. It is therefore difficult
to locate the transition based on the order parameter for
small N. However, gc can be determined accurately from
excited states. The lowest excitation of a chain with evenN
is a triplet for g < gc and a singlet for g > gc. The crossing
point of these levels is a rapidly converging finite-N defi-
nition of gc [7,8]. The same physics can be expected also in
the presence of the long-range interaction, if � is suffi-
ciently large. This is shown for a 16-spin chain at � ¼ 4 in
the upper panel of Fig. 2. Singlets with momenta k ¼ 0 and

k ¼ � (out of which symmetry-broken dimerized states
can be formed) should be degenerate in the VBS phase. For
finite N, this degeneracy is not exact (except in the J1-J2
chain at the special point g ¼ 1=2), but a region of very
near degeneracy for g > 1=2 can be seen in the figure. The
region of approximate degeneracy, which is not easy to
demarcate precisely, expands very slowly toward smaller g
with increasing N. In contrast, the singlet-triplet crossing
point is well defined and converges rapidly. Extrapolating
the crossing point to N ¼ 1 for different �, as illustrated
in Fig. 3, can reliably give the QLROð�Þ-VBS phase
boundary gcð�Þ for � * 2.
Upon decreasing � below � 2, the broad maximum in

the ground state energy versus g becomes increasingly
sharp. As seen in the lower panel of Fig. 2, at � ¼ 1, it
has developed into a sharp tip due to an avoided level
crossing with the second singlet at k ¼ 0. The real
singlet-triplet crossing has moved to the same region. An
avoided level crossing leading to a discontinuity in the
derivative of the ground state energy with respect to g for
N ! 1 is the hallmark of a first-order transition. The
nature of the phases at this transition will be discussed
below. First, let us investigate how the transition evolves
from continuous to first order.
Figure 3 shows the size dependence of the level-crossing

point gcross and the location gpeak of the maximum in the

ground state energy. In the J1-J2 chain, the size correction
to the crossing point is / 1=N2, which also can be seen for
large �. For smaller �, the corrections instead seem to be
/ 1=N, but a crossover to 1=N2 for large N seems likely as
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FIG. 2 (color online). Low-energy levels of a 16-spin system at
� ¼ 4 (upper panel) and � ¼ 1 (lower panel). The spin S and
the momentum k of the states are indicated in the upper panel.
The inset in the lower panel shows the avoided level crossing of
the two k ¼ 0 singlets in greater detail.
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FIG. 1 (color online). Approximate phase diagram as a func-
tion of the frustration strength g and the inverse of the long-range
exponent �. The dashed curves indicate continuous phase tran-
sitions, whereas the thick solid curve represents a first-order
transition. The curve for g < 0 corresponds to the interaction
studied in [10]. At ��1 ¼ 0, the dominant spin correlations in
the VBS state change from k ¼ � to �=2 at g � 0:52 [9]. This
transition (or cross over) evolves to the point where all the phase
boundaries come together.
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long as the transition remains continuous. The peak loca-
tion moves in the opposite direction. For some � and N !
1, gcross and gpeak should coincide. The results indicate

that both gcross and gpeak have dominant 1=N corrections at

this point. Fitted lines are shown in Fig. 3 at � ¼ 2, where
there is still a small gap between the two extrapolated
values. For � ¼ 1:7, where the transition is first order,
they should coincide (and then the asymptotic size correc-
tion should be exponential).

To verify an avoided level crossing with a discontinuous
energy derivative for � & 1:8, the second derivative of the
ground state energy at its maximum is graphed on a lin-log
scale in Fig. 4. It grows exponentially with N for � ¼ 1:5,
showing that the slope of the energy curve indeed changes
discontinuously for an infinite chain. In contrast, at � ¼ 3,
the second derivative decreases for large N. For � ¼ 2,
convergence to a finite value also seems plausible, whereas
� ¼ 1:7 and 1.8 appear to be close to a separatrix (where
the form of the divergence is consistent with a power law)
between the two different behaviors.

This analysis suggests that the continuous dimerization
transition changes smoothly into a first-order transition at
(gm � 0:41, �m � 1:8). The singlet-triplet crossing moves
toward the ground state energy maximum and coincides
with it at the multicritical point (gm, �m), beyond which it
develops into a first-order singularity. Note that the
rounded energy maximum in the VBS phase for large �
has no special significance (except at ��1 ¼ 0 where it
corresponds to the exact singlet-product ground state). It is
only when it develops into the sharp avoided level crossing
that it is associated with a phase transition.

To discuss the states involved in the first-order transi-
tion, consider the spin and bond correlation functions,

CðrÞ ¼ hSi � Siþri; (3)

DðrÞ ¼ hðSi � Siþ1ÞðSiþr � Siþrþ1Þi: (4)

In Fig. 5, these are graphed for two g values, at either side

of the transition for � ¼ 1. At g < gc, the dominant spin
correlation CðkÞ in Fourier space is at wave number k ¼ �,
and finite-size scaling shows that the sublattice magneti-
zation remains nonzero forN ! 1. There is no structure in
DðrÞ, i.e., there is no VBS order. This is thus an AFM
phase, the continuation of the AFM state studied in [10], as
indicated in Fig. 1. For g > gc, there is VBS order.
Interestingly, in this phase, there are also strong spin
correlations at k ¼ �=2, which can be seen clearly as a
real space period-four oscillation in Fig. 5. Finite-size
scaling indicates that there is no long-range spin order,
but the correlations appear to decay as 1=r� with � � 1;
thus, this state is denoted as QLROð�=2Þ.
Examining the correlations as a function of g, disconti-

nuities (increasingly sharp jumps with increasing N) de-
velop for �< 1:5. This should persist until the
multicritical point at �m � 1:8, but larger systems are
needed to observe the discontinuity very close to this point.
The VBSþ QLROð�=2Þ state should have gapless spin

excitations. The lowest triplet has k ¼ �=2. It is, however,
difficult to demonstrate the gaplessness based on data for
small systems because the size-dependence of the gaps
(and other quantities) for N ¼ 4n exhibit even-odd oscil-
lations in n. In the VBS phase, the lowest triplet is at k ¼
�, even when the spin correlations (exponentially decay-
ing) are peaked at k ¼ �=2. The level crossing between the
lowest k ¼ � and k ¼ �=2 triplets can be used to extract
the boundary between the VBS and VBSþ QLROð�=2Þ
phases. The size dependence of the crossing point is not
smooth, however, and cannot be extrapolated very reliably.
The boundary between dominant k ¼ � and k ¼ �=2 spin
correlations in the VBS phase has also not been extracted
accurately.
Let us briefly return to Fig. 2 for another interesting

feature of the level spectrum: The lowest singlet excitation
for small g has momentum k ¼ � for � ¼ 4 but k ¼ 0 for
� ¼ 1. The switching of the order of these levels as a
function of � for g < gc is associated with the
QLROð�Þ-AFM transition. The level crossings can be
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FIG. 3 (color online). Dependence on the inverse chain length
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parameter g at the point gpeak where the ground state energy
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used to extract this phase boundary very accurately up to
g � 0:25 (while for higher g the N ! 1 extrapolations
become difficult); a more detailed discussion of this issue
is given as a footnote [19]. As indicated in Fig. 1, �c

depends only weakly on g. The results are consistent
with the location quoted above for the multicritical point.

In summary, the combination of short-range frustration
and long-range unfrustrated interactions in one dimension
has been shown to lead to a first-order transition between a
Néel state and a VBS with coexisting critical k ¼ �=2 spin
correlations. It should be noted that the system sizes
studied here are small, and it cannot be excluded that the
spin correlations could become incommensurate, as they
do in the J1-J2 chain for J2=J1 > 1 [20]. Hopefully, field
theories that very successfully describe the standard di-
merization transition [5], and recently also the transition
between the critical spin state and the Néel state [10], could
be generalized to the coexistence state as well.

Recent calculations [14] for metallic chains have shown
that interactions of the type used here are realistic, but in
these systems, S > 1=2. Although one cannot describe
these systems completely using a spin-only model, it
would still be interesting to repeat the calculations dis-
cussed here for larger S. This is much more challenging,
however, because of the rapidly growing size of the Hilbert
space with S. Although the DMRG method [17,18] is not
ideally suited for systems with long-range interactions, it
may still be possible to use it to study lattice sizes beyond
the limits of Lanczos calculations.
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FIG. 5 (color online). Spin (upper panel) and dimer (lower
panel) correlations in a 32-spin chain at � ¼ 1. At g ¼ 0:25 and
0.45, the system is in the AFM and VBS-QLROð�=2Þ phases,
respectively. A first-order transition between these states occurs
at g � 0:39.
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