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Viscous Rayleigh-Taylor Instability Experiments at High Pressure and Strain Rate
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Experimental results showing significant reductions from classical in the Rayleigh-Taylor instability
growth rate due to high pressure effective lattice viscosity are presented. Using a laser created ramped
drive, vanadium samples are compressed and accelerated quasi-isentropically at ~1 Mbar peak pressures,
while maintaining the sample in the solid state. Comparisons with simulations and theory indicate that the
high pressure, high strain rate conditions trigger a phonon drag mechanism, resulting in the observed high
effective lattice viscosity and strong stabilization of the Rayleigh-Taylor instability.
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When a low density fluid of density p; accelerates a
higher density fluid of density pj, conditions for the buoy-
ancy driven Rayleigh-Taylor (RT) instability are set up
[1,2]. Perturbations at the interface can grow, generating
“bubbles’ of the lower density fluid rising into the denser
fluid, and “‘spikes” of the latter sinking through the low
density fluid [3]. We present experimental and simulation
results that demonstrate a new RT instability stabilization
mechanism at high pressure and strain rate, namely, effec-
tive lattice viscosity by phonon drag. This high pressure
stabilization mechanism is predicted to increase with pres-
sure and strain rate, provided the solid-state lattice is
maintained.

A typical target in our experiment has a “‘reservoir”
consisting of 40 wm thick polyimide, 125 pm thick poly-
carbonate, and 35 um thick brominated polystyrene,
CsoHygBr,, glued together. This is followed by a 300 wm
vacuum gap, then the rippled V sample, made by sputtering
Vonto a mandrel that has sinusoidal ripples of A = 60 um
wavelength and 7y = 0.6 wum initial amplitude machined
onto its surface. The back surface of the V is polished flat,
and then the mandrel is chemically removed. The vana-
dium samples were full density, had an average grain size
of ~1 umin the lateral direction, 3—5 wm in the thickness
(columnar) direction, and a measured tensile strength at
ambient pressure and low-strain rate of 7.15 kbar [4]. To
thermally insulate the rippled V sample from the heat
created by the stagnating plasma, we use a 7-8 um thick,
CH-based epoxy ‘“heat shield,” conformal on the ripple
side and machined flat on the gap side. The drive calibra-
tion shots replaced the rippled V package with 10 um Al
backed by a 500 uwm LiF window for interface velocity
measurements.

We use six azimuthally symmetric laser beams at the
Omega Laser, University of Rochester, each with E; ~
135 J energy at laser wavelength of A; = 351 nm and
3.7 ns square pulse shape, to generate our drive. The
~640 pm diameter flattop spatial profile is achieved using
continuous phase plates on the drive beams [5], creating an
average peak laser intensity of I, ~2.5 X 101 W/cm?.
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This launches a strong shock through the reservoir which,
at shock breakout, releases as a plasma across the 300 um
vacuum gap and stagnates on the V sample, creating a
~1 Mbar ramped pressure drive, as illustrated schemati-
cally in Fig. 1(a) [6,7]. Based on Newton’s second law, P ~
pgAz, this causes the Az =35 um thick V sample to
accelerate at a peak value of g~ 5 X 103 cm/s?. The
accelerating sample is RT unstable; the ripple amplitude
increases at a rate that is reduced due to material strength.
Density plots from 2D simulations at a sequence of times,
shown in Fig. 1(b), illustrate the stabilization of RT growth
due to material strength. The particle velocity (u,,) of the
AI-LiF interface was measured on drive shots by a line
velocity interferometer system for any reflector (VISAR)
diagnostic ([8] and references therein) for a range of laser
energies, as shown in Fig. 2(a). From simulations with the
radiation-hydrodynamics code LASNEX [9], adjusted to
reproduce this VISAR data, we generate the plasma drive:
a set of material density, velocity, and temperature profiles
as a function of position from the unloading reservoir just
prior to impacting the sample, as illustrated in the inset of
Fig. 2(a). This plasma drive applied to the V sample
generates a ramped loading reaching P,,,, ~ 900 kbar, as
shown in Fig. 2(b), at peak compressions of p/py ~
1.3-1.4. The sample is predicted to stay factors of 3-5
below the calculated melt temperature based on the
Lindemann law [10], as shown in the inset in Fig. 2(b).
To measure the RT ripple growth, we used face-on
radiography with a 5.2 keV laser driven vanadium He-«
x-ray backlighter. For area backlighting, we use a large
area x-ray source and a gated x-ray camera with a 2 X 2
array of 15 um pinholes configured at magnification of ~6
[11]. Alternatively, we use a ~15 um diameter pinhole
aperture placed just in front of the V backlighter foil to
create a point source for projection imaging at magnifica-
tion of ~19, onto a gated x-ray camera. Figure 1(c) shows
example radiographs recorded at 40 ns (lower) and 80 ns
(upper). The contrast (light and dark horizontal bands) are
due to variations in transmitted probe x-ray intensity, / =
Iyexp(—z/Amgp), Where [ is the incident probe x-ray

© 2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.104.135504

PRL 104, 135504 (2010)

PHYSICAL REVIEW

week ending

(a) Vanadium Drive Vanadium (¢
backlighter Laser sample

5.2 keV x rays
) e\
| /

t=80 ns

N Mgy
15 pm

pinhole reservoir . gap

With material strength No strength

(b) “-saﬁma 65‘3 75? g

FIG. 1 (color). (a) Schematic illustrating the experimental
configuration. (b) Density plots of the RT growth from 2D
radiation-hydrodynamics simulations at 45, 55, 65, and 75 ns,
using the PTW strength model. The second plot at 75 ns (far
right-hand side) is for a simulation where V has no strength,
showing the much greater RT growth. (c) Experimental x-ray
radiographs of driven vanadium RT samples at 40 and 80 ns.

intensity, / is the transmitted intensity, A, is the x-ray
mean free path length, and z is the vanadium foil thickness.
The RT growth causes foil thickness modulations of in-
creasing depth, Az, which cause x-ray optical depth mod-
ulations, AOD = Az/A,. The lineouts of radiographic
images of the ripples, averaged over a 120 um vertical
window at the center of each image, were fitted using
In(Z,/I) = a sin(zT” — ¢). Here I is the average probe
x-ray intensity through the rippled foil, 7, is the intensity
in the ripple valleys (thinner regions of the foil, so brighter
regions of transmitted probe x rays), and a, A, and ¢ are the
fitted amplitude, wavelength, and the phase of the ripple.
The perturbation growth is written as a growth factor,
GF(r) = AOD(r)/(AOD, X MTF), where AOD(?) is the
modulation in optical depth at time ¢ due to the ripple,
AOD, = 7,/ Amfp 18 the initial optical depth, where 7, is
the initial rippled amplitude, Ayg, ~ 19.6 pwm is the mean
free path length of the 5.2 keV backlighter x rays in
vanadium, and MTF is the modulation transfer function.
The AOD(¢) is determined from the radiograph by a
Fourier analysis of the ripple lineouts. The MTF, which
quantifies the diagnostic spatial resolution, is measured on
separate shots using a resolution grid: MTF > 0.8 for the
A = 60 um ripples used in this experiment.

We compare our RT growth factor measurements to the
results from 2D radiation-hydrodynamics simulations in-
cluding a constitutive strength model. The Preston-Tonks-
Wallace (PTW) strength model is strain rate dependent,
and is based on the deformation mechanisms of thermal
activation for low-strain rates and viscous phonon drag for
high-strain rates [12]. The PTW strength in the low-strain
limit is expressed as

oy =2Gmax{yo = (yo — ye)erf[kTIn(y£/€)] s0(8/ v},

where G = G(P, T) is the pressure dependent shear modu-
lus, erf is the mathematical error function [13], & is the
strain rate, 7' = T/T,, is the normalized temperature,
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FIG. 2 (color). Drive characterization. (a) Line VISAR mea-
surements of particle velocity at the Al-LiF interface for a
10 um Al foil backed by a ~500 pwm thick LiF window at
four different laser energies, E; = 743, 776, 790, and 818 J. The
inset shows the result of a simulation giving density versus
position, p(z), of the shock-released reservoir “plasma drive.”
b) Corresponding pressure versus time in the vanadium sample
(solid black curve), as calculated from the radiation-
hydrodynamics simulations. The dotted red curve gives the
strength versus time predicted from the simulation using the
PTW strength model with input parameters modified to repro-
duce the RT experiment. The inset shows the Lindemann law
melt temperature (red curve) and sample temperature (blue
curve) from the simulations.

Ter(p) is the Lindeman law melt temperature [10], £ is
a reference inverse time scale, y&é = &, is the critical
strain rate above which the deformation switches from
thermal activation to phonon drag, and yg, Ve, K, ¥, So»
and B are material dependent input parameters. These
parameters roughly correspond to material properties ac-
cording t0 ¥ ~ pisioch?s K ~ 1/U, Yoo ~ 0 a4 Yo ~ 04 +
op, and yg — Yo ~ Op, Where pgigoc, > Uy, 04, and op
represent dislocation density, Burgers vector, kink activa-
tion energy, athermal strength component, and Peierls
stress, respectively [14]. The PTW strength o in the
high-strain (saturated) limit has a similar form, only with
so and s, replacing y, and y.. These two limits are
interpolated in between by a Voce work hardening pre-
scription for arbitrary strain & [12].

After normalizing to the laser energy of 820 J, the self-
consistent data set of GF(r) spanning several shot cam-
paigns is shown by the red square symbols in Fig. 3.
Typical experimental errors are estimated to be
S8GF/GF ~ 10%. We estimate an average strain rate, &,, ~
3 X 107 s71, by fitting a linear slope to the calculated
strain over the interval of 25-40 ns. For # > 40 ns, this
drops to &,, ~ 3 X 10° s~!. The top curve (“no strength”)
corresponds to a 2D simulation of the RT growth with
material strength turned off, and overpredicts the experi-
mental data at 70 ns by a factor of ~6. A simulation using
the PTW model with the default input parameters [12] is
shown by the next highest curve (“PTW_nominal”), and
also considerably overpredicts the experimental data. To fit
our data with the PTW model in Fig. 3 (solid blue curve,
“PTW_mod”), we lowered the critical strain rate for the
transition from the thermal activation to the phonon drag
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FIG. 3 (color). Measured and simulated Rayleigh-Taylor (RT)
growth factors (ripple amplitude divided by initial amplitude)
versus time. The solid red square plotting symbols give the
experimental data. The top curve (dot-dashed brown) gives the
result from the 2D simulation with strength set to zero. The dot-
dashed blue curve gives the result using the PTW strength
model, with default input parameters for vanadium. The solid
blue curve corresponds to the PTW model, with the default
vanadium input parameters 7y, vy, S, multiplied by 1/800,
0.60, and 0.68, respectively. The solid orange curve corresponds
to an analytic approach treating the material strength as an
effective lattice viscosity, with a constant value of viscosity of
400 P. The inset gives the PTW strength versus log(&) for the
low-strain limit (o) and the saturated, high-strain limit (o) for
default (black solid) and for the modified (blue dashed) input
parameters, assuming pressure P = 500 kbar, temperature 7 =
500 K, and compression p/p, = 1.236.

regime from the default value of y& ~ 10° to ~10° 57!,
accomplished by multiplying the PTW input parameters v,
vo» and sy by 1/800, 0.60, and 0.68, respectively. The
default PTW parameters for V in the high-¢ regime were
set by comparisons with overdriven shock experiments
in Ta, also a bcc metal, at de/dr>10° s~ [12].
Furthermore, the strain rate interval of 10*-10° s~! was
not modeled but rather ““filled in”” with PTW, due to the
absence of reliable data to fit. So, it is not surprising that
substantial changes in these input parameters for ramp
loaded V were required. These changes to the PTW input
parameters leave the strength predictions at & < 10° s!
(thermal activation regime) largely unchanged [15], while
increasing the strength for £ > 10% s™! (phonon drag re-
gime), as shown in the inset of Fig. 3. It is interesting to
note that the Steinberg-Lund strength model [16], which
has several features similar to the PTW model, predicts the
transition from thermal activation to phonon drag in vana-
dium would occur at &, ~ 10° s™! for default input pa-
rameters. Hence, the critical strain rate for the transition
from thermal activation to phonon drag is uncertain by
factors of 10°~10%, due to the lack of data in this high-¢&

regime. The dotted red curve in Fig. 2(b) shows the spa-
tially averaged V strength versus time for the PTW model,
after averaging over ~ns level temporal fluctuations; the
maximum strength occurs at the time of peak pressure and
strain rate. The calculated peak strength for our RT experi-
ments, 0. ~ 25 kbar, corresponds to a peak pressure and
strain rate of 900 kbar and 3 X 107 s~!. This is a factor
of 3.5 higher than the measured ambient strength of
7.15 kbar [4]. Recent theoretical work shows that the shear
modulus is not expected to increase significantly with
pressure in this pressure range [17]. This suggests that
our observed strength increase is due to strain rate effects
rather than pressure. We estimate an overall ~20% uncer-
tainty in our o, ~ 25 kbar peak strength result, based on
10% due to the uncertainties in the growth factor measure-
ments, 10% due to the uncertainties in our plasma drive,
and 10% due to potential model dependence in our analy-
sis, all added in quadrature.

We now compare to an analytic RT growth model that
treats strength as an effective lattice viscosity. In the linear

regime, classical RT growth can be written as GF =

e f yclassicaldt’ Where 'yclassical = [A 2777— g([)]l/z giVeS the

growth rate for inviscid fluids, and A, A, and g are the
Atwood number, perturbation wavelength, and foil accel-
eration, respectively. For viscous fluids, the RT growth rate
is determined from yi; + 2k*vygr — gkA = 0 [18,19],
where v(cm?/s) = u/p is the kinematic viscosity,
w(dyns/cm? = P) is the dynamic viscosity, and p is den-
sity. We show these analytic results for RT growth factors
versus perturbation wavelength at 70 ns in Fig. 4.
Experimental data were taken at A = 40 and 60 pum (red
squares). The 2D simulations were done at A = 40, 60, and
100 um with the modified PTW strength model (blue
diamonds). The smooth curves in Fig. 4 correspond to (in
order from the top) dynamic viscosities of 0, 100, 200, 400,
and 800 P, with a best fit using & ~ 400 P. We show also in
Fig. 3 the growth factor time evolution for the viscous
model using 400 P. As a consistency check, we use a
relationship equating strength o with an effective lattice
viscosity, v = u/p = o/(N6p()) [19], giving o =
J6(s)w. Using an average strain rate of (&)=~
3 X 107 s7! over the interval of 2540 ns from the 1D
radiation-hydrodynamics simulations and the fitted viscos-
ity of 400 P gives an estimated peak strength of o, ~
29 kbar. For a second estimate, we make a rough approxi-
mation of strain rate from (&) =1p/p =1(Ap/po)/
At time [0]. The equation of state of V [20] allows an
estimate of compression at p/p, ~ 1.4, which occurs over
the measured rise time of ~6ns, giving (&)=
2 X 107 s~ !, This gives a second estimate of peak strength
of o ax ~ 19 kbar. These two analytic approximations
bracket to within ~20% the more accurate result for the
strength at peak pressure of o, ~ 25 kbar inferred from
the 2D RT simulations, shown in Fig. 2(b).
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FIG. 4 (color). Measured, simulated, and analytic RT disper-
sion curves, given as growth factor versus perturbation wave-
length at a time of 70 ns. The blue diamond solid plotting
symbols correspond to a simulation with the PTW strength
model adjusted to fit the experiment. The square red plotting
symbols at A = 40 and 60 um correspond to the experimental
measurements. The smooth curves correspond to the analytic
viscous RT model assuming viscosities of (from the top) 0, 100,
200, 400, and 800 P.

We now relate our inferred macroscopic fluid viscosity
of ~400 P to the microscopic dislocation drag coefficient
in the phonon drag regime of high-strain rate deformation.
A macroscopic viscosity for our experiment can be defined
by Oghear ~ MURT/ ArT> Where w is the dynamic viscosity,
T ghear 18 the shear stress causing the RT growth, and vgy is
the RT bubble velocity for perturbation of wavelength Agt.
At the lattice level, applied shear stress is related to dis-
location velocity by o gcacb = MBvgig0c, Where M ~ 2.75
is the Taylor factor (to account for the glide plane orienta-
tion), b is the Burgers vector, and B is the dislocation drag
coefficient [21]. And Orowan’s equation relates macro-
scopic strain rate to microscopic parameters, & =
Pdisioc P Vdisioc/ M, Where pgigoc 18 the dislocation density.
These three equations can be combined to give u/B ~
M?/(pgigoch®). Taking a dislocation density of
~10'"" ¢cm™? from a multiscale simulation of our RT ex-
periment [22], and assuming b ~ 2.5 A under compres-
sion, gives u/B ~ 4 X 10*. We conclude that our inferred
effective lattice viscosity of ~400 P corresponds to an
order of magnitude estimate of the dislocation drag co-
efficient of ~0.01 dyn s/cm? in the phonon drag re-
gime under the peak pressure (~1 Mbar) and strain rate
(~107 s7') conditions of our vanadium RT experiment.
Interestingly, Nemat-Nasser and Guo infer a similar value

for the drag coefficient of V and Ta, B ~ 1073 Pas =
1072 dyn s/cm?, in their Hopkinson bar experiments at
strain rates of 2500-8000 s~ ! and dislocation densities of
~10° ecm™2 [23].
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