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The energy of ions accelerated by an intense electromagnetic wave in the radiation pressure dominated

regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the

number of accelerated ions in the irradiated region resulting in an increase in the ion energy and in the ion

longitudinal velocity. In the relativistic limit, the ions become phase locked with respect to the

electromagnetic wave resulting in unlimited ion energy gain.
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The radiation pressure of a superintense electromagnetic
pulse on a thin quasineutral plasma slab has been proposed
in Ref. [1] as an acceleration mechanism able to provide
ultrarelativistic ion beams. In this radiation pressure domi-
nant acceleration (RPDA) regime (also called the ‘‘laser
piston’’ or the ‘‘light sail’’), the ions move forward with
almost the same velocity as the electrons, thus acquiring
much greater kinetic energy than the electrons. This accel-
eration process is highly efficient, with the ion energy per
nucleon being proportional in the ultrarelativistic limit to
the electromagnetic pulse energy. The idea of transferring
momentum from light to macroscopic objects goes back to
[2]. In the mid 1950s ion acceleration was suggested using
the radiation pressure of a high intensity electromagnetic
wave acting on an electron cloud which drags a small
portion of ions by a collective electric field [3].

Recently the RPDA regime of laser ion acceleration has
attracted great attention. In Refs. [4,5] the stability of the
accelerated foil has been analyzed. References [6,7] are
devoted to extending its range of operation towards lower
laser intensities. The interaction of a high intensity laser
pulse with extended plasmas in the RPDA regime has been
simulated in [8]. In Refs. [1,9] the effects of foil trans-
parency are considered.

An indication of the effect of radiation pressure on bulk
target ions is obtained in experimental studies of plasma
jets ejected from the rear side of thin solid targets irradiated
by ultraintense laser pulses [10] and in the experiments
reported in Ref. [11].

While Ref. [6] develops regimes of energy enhancement
of accelerated ions by using laser pulse polarization and
target structuring [12], in this Letter we propose to increase
the energy of accelerated ions using transversally expand-
ing targets. The transverse expansion of the target is pro-
vided by the action of the ponderomotive force of a laser
pulse with a finite waist. It can also occur as a result of the
instability described in Refs. [4,5].

The nonlinear dynamics of a laser accelerated thin target
is described within the framework of the thin shell approxi-

mation [13]. The target is modeled as an ideally reflecting
shell. The equation of motion of the surface element of the
shell is �Ndp=dt ¼ P�s, where P is the light pressure,
and p is the momentum of the surface element, with the
area given by the oriented vector surface area element �s,
carrying �N ¼ nlj�sj particles which is constant in time.
Here n and l are the shell density and thickness.
In order to describe the surface evolution, we intro-

duce the Lagrange coordinates � and � playing the role
of the markers of the shell surface element. The shell
surface is parametrized by the vector Mð�; �; tÞ ¼
fxð�; �; tÞ; yð�; �; tÞ; zð�; �; tÞg. At a regular point, the ori-
ented vector surface area element is �s ¼ @�M�
@�Md�d� [14]. The shell initially is in the plane x ¼ 0,
Mð�; �; 0Þ ¼ f0; �; �g, which gives �N ¼ n0l0d�d� ,
where n0 and l0 are the shell density and thickness at t ¼
0. The particle number conservation implies nl ¼
n0l0=j@�M� @�Mj. The equations of the shell motion are

n0l0@tpi ¼ P"ijk@�xj@�xk; (1)

@txi ¼ cpi=ðm2
�c

2 þ pkpkÞ1=2; (2)

where m� is the ion mass, "ijk is the unit antisymmetric

tensor, i ¼ 1; 2; 3, and summation over repeated indices is
assumed. The radiation pressure exerted on the ideally
reflecting shell by an electromagnetic wave propagating
along the x axis with amplitude E ¼ Eðt� x=cÞ is P ¼
ðE2=2�Þð1� �Þ=ð1þ �Þ, where�¼cpx=ðm2

�c
2þp2

xÞ1=2.
We consider the case when the accelerated shell moves

in the longitudinal direction with an ultrarelativistic veloc-
ity, i.e., px=m�c � 1, while its transverse momentum is
relatively small compared to the longitudinal one. We look
for solutions of Eqs. (1) and (2) assuming a local depen-
dence of the transverse coordinates, y ¼ �yðtÞ�, z ¼
�zðtÞ� , corresponding to the surface local extrema in the
direction of the x axis, when xð�; �; tÞ ¼ xðtÞ is locally
independent of � and � . In this case the right-hand (rhs)
side of Eq. (1) for the momentum transverse components
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vanishes, so that the shell expands ballistically: py ¼ �0
y�,

pz ¼ �0
z� , where �0

y and �0
z are constants, with �yðtÞ ¼

1þ ð�0
y=m�Þ

R
t
0 dt

0=�ðt0Þ and similar formula for�z. Here

�ðtÞ is Lorentz factor, given by � ¼ ½1þ ðpx=m�cÞ2�1=2
within the framework of our approximation. Inserting these
expressions into Eq. (1), we obtain the equation for the
momentum longitudinal component px,

dpx

dt
¼ m�v

2
E

l0

1� �

1þ �
�y�z; (3)

where v2
E ¼ E2=2�n0m�. The shell surface density de-

creases as nl ¼ n0l0=�y�z. In the case of no expansion

of the shell we have �0
y ¼ �0

z ¼ 0 and �y ¼ �z ¼ 1, and

Eq. (3) gives (for a constant amplitude pulse) the following
asymptotic for the shell momentum [1]:

pxðtÞ ¼ m�cðt=�1=3Þ1=3; t ! 1; (4)

where �1=3 ¼ 4l0c=3v
2
E. In the case of transverse expan-

sion along the y axis (�0
y > 0; �0

z ¼ 0),

pxðtÞ ¼ m�cðt=�1=2Þ1=2; t ! 1; (5)

with �1=2 ¼ ðl0m�c=v
2
E�

0
yÞ1=2. The shell surface density

decreases as nl / t�1=2. As found in Ref. [5], in the case of
transverse expansion along both the y and z axes (�0

y >

0; �0
z > 0), Eq. (3) yields

pxðtÞ ¼ m�cðt=�3=5Þ3=5; t ! 1; (6)

with �3=5 ¼ ð48l0m2
�c=125v

2
E�

0
y�

0
zÞ1=3. The shell surface

density decreases as nl / t�4=5. We see that the momentum
of an expanding shell grows faster than that of a nonex-
panding shell.

The wave phase is

c ¼ !0ðt� x=cÞ ¼ !0

Z t

0
ð1� �ðt0ÞÞdt0: (7)

Substituting a power dependence of the ion momentum on
time, pxðtÞ ¼ m�cðt=�kÞk, into Eq. (7), we obtain

c

!0�k
¼ t

�k
�ðt=�kÞkþ1

kþ1 2F1

�
kþ1

2k
;
1

2
;
3kþ1

2k
;�

�
t

�k

�
2k
�
;

(8)

where 2F1ð�;�; �; zÞ is the Gauss hypergeometric func-
tion [14]. Asymptotically, expression (8) yields for t ! 1

c

!0�k
! ðt=�kÞ1�2k

2� 4k
þ 1

�1=2
�

�
2k� 1

2k

�
�

�
kþ 1

2k

�
; (9)

where �ðzÞ is the Euler gamma function [14]. If the power
index k is larger than 1=2, the first term in the rhs of Eq. (9)
tends to zero for t ! 1 and the wave phase seen by the
shell becomes frozen, c ! c �. For 0< k � 1=2, Eq. (9)
gives unbounded phase. For the ion momentum depen-
dence on time given by Eq. (6) k ¼ 3=5, c � �
2:804!0�3=5. We see that in the case of a nonexpanding

shell, when the momentum dependence on time is given by
Eq. (4), or if the shell expands only in one transverse
dimension as in Eq. (5), the wave phase diverges, while
for a shell expanding in two transverse dimensions the
phase shift between the laser pulse and the accelerated
ions remains finite. For a long enough laser pulse the
ions at the pulse axis become trapped inside the pulse
with formally unlimited energy growth, at the expense of
particle number decrease. We note that unlimited electron
acceleration regimes are well known for electrons accel-
erated by the electromagnetic wave in the cyclotron autor-
esonance regime [15], for the electrons trapped by an
electrostatic wave propagating perpendicularly to the mag-
netic field [16], and in inhomogeneous plasmas with a
downgrading density [17].
A formally unlimited ion energy growth predicted by the

ideally reflecting thin shell model becomes limited when
we take into account the shell transparency [1,9]. Two
effects compete in determining the transparency of the
accelerated and expanding shell: as the longitudinal mo-
mentum increases, in the proper frame of reference of the
shell the laser frequency decreases proportionally to 1=2�
(in the ultrarelativistic regime), while the shell surface
density decreases. The shell remains opaque while the laser
dimensionless amplitude is below the threshold determined
by the ratio between the shell surface density and the laser
frequency [18]

a0 � ð"p=�y�zÞ½ð1þ �Þ=ð1� �Þ�1=2; (10)

where "p ¼ 2�n0l0e
2=me!0c. For the shell expanding in

two transverse dimensions, this threshold tends to zero as

t�1=5, making the foil transparent for the laser pulse. For
the shell expanding in only one transverse dimension, the
shell can always be opaque for the incident laser pulse.
Controlling the laser pulse shape one can set an optimal

condition for an unlimited acceleration. We look for an
optimal laser pulse shape represented by the function Eðc Þ
in terms of the wave phase c . Changing the independent
variable from t to c , we rewrite Eq. (3):

dpx

dc
¼ m2

�!0c

�0
?

h2ðc Þ �2

1þ �
; (11)

where we introduced a normalized intensity of the laser
pulse h2ðc Þ ¼ E2ðc Þ�0

?=2�n0l0m
2
�!

2
0c, � ¼ �y ¼ �z,

�0
? ¼ �0

y ¼ �0
z , and

d�

dc
¼ �0

?
m�!0

�
1þ �

1� �

�
1=2

: (12)

The system of Eqs. (11) and (12) can be cast in the form

d2�

dc 2
¼ h2ðc Þ�2: (13)

For a rectangular laser pulse, Eðc Þ ¼ E0 for 0< c <
!0tlas and Eðc Þ ¼ 0 elsewhere, the laser normalized in-
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tensity is h20 ¼ E2
0�

0
?=2�n0l0m

2
�!

2
0c. In this case the so-

lution to Eq. (13) can be expressed in terms of the
Weierstrass elliptic function, }ðu; fg2; g3gÞ [14], for g2 ¼
0:

�ðc Þ ¼ ð6=h20Þ}ðc � � c ; f0; g3gÞ; (14)

where g3 ¼ ðh40=36Þð2h20�3
0=3��02

0 Þ is constant deter-

mined by initial conditions. The phase c � should be deter-
mined by the smallest positive solution to }ðc � �
c ; f0; g3gÞ ¼ h20�0=6. At c ! c �, Eq. (14) yields

�ðc Þ ¼ 6h�2
0 ðc � � c Þ�2 þ 3g3ðc � � c Þ4=14h20 þ � � � .

The solution to Eq. (11) gives a dependence of the
momentum on the phase:

�þ px

m�c
¼1þ6m�!0

h20�
0
?

½}0ðc �;f0;g3gÞ�}0ðc ��c ;f0;g3gÞ�;

(15)

where }0ðu; fg2; g3gÞ is the derivative of the Weierstrass
elliptic function with respect to the first argument. We see
that px / ðc � � c Þ�3 at c ! c �. From Eq. (7) we find

the dependence of the phase on time, ðc � � c Þ / t�1=5, in
the limit c ! c �, which corresponds to the time depen-
dence of the momentum given by Eq. (6).

The ion acceleration can be effectively optimized by
tailoring the laser pulse shape. Assuming the laser pulse

shape hðc Þ ¼ h0ðc � � c Þm, corresponding to the pulse
electric field profile Eðx; tÞ ¼ E0½c � �!0ðt� x=cÞ�m
being of the same class as plotted in Fig. 1 of Ref. [4],

we obtain the exact solution of Eq. (13) �ðc Þ ¼ 2ð1þ
mÞð3þ 2mÞh�2

0 ðc � � c Þ�2ð1þmÞ. Using this dependence

and integrating Eq. (11), we obtain the dependence of the
momentum on the phase

�þ px

m�c
¼1þ4m�!0

h20�
0
?

½ð1þmÞ2ð3þ2mÞ�

�½ðc ��c Þ�3�2m�c�3�2m� �: (16)

Integration of Eq. (7) yields the time dependence of the
phase c ðtÞ. It reads

c ¼ c ��
��

m�!0

h20�
0
?

�
2 8ð1þmÞ4ð3þ2mÞ2

ð5þ4mÞ!0t

�
1=ð5þ4mÞþ��� :

(17)

This results in the momentum time dependence

px ¼ m�cðt=�kÞk þ � � � ; (18)

where the power k ¼ ð3þ 2mÞ=ð5þ 4mÞ. We note that it
satisfies a condition k > 1=2 form>�5=4. The character-
istic acceleration time �k is equal to

�k ¼ 2

ð5þ 4mÞ!0

�
2ð1þmÞ2ð3þ 2mÞm�!0

h20�
0
?

�
1=ð3þ2mÞ

:

(19)

The momentum per unit surface of the shell asymptotically

depends on time as pxnl / t�ð1þ2mÞ=ð5þ4mÞ. If the power
�5=4<m<�1=2, the momentum per unit surface grows
in time with the same asymptotic as the rhs of the opaque-
ness condition Eq. (10). Our model predicts a relatively
slow dependence of the accelerated ion number on their

energy: nl / p�ð4þ4mÞ=ð3þ2mÞ
x .

In the nonrelativistic limit, when pi ¼ m� _xi, Eqs. (1)
and (2) admit the exact solution x ¼ v2

E�
2
ex½ð1þ

t=�exÞ4 � 4t=�ex � 1�=12l0, with y ¼ �ðtÞ�, z ¼ �ðtÞ� ,
and �ðtÞ ¼ 1þ t=�ex, where �ex ¼ m�=�

0
? is an expan-

sion time. Asymptotically for t ! 1 the ion kinetic energy
grows as E� � m�v

4
Et

6=18l20�
4
ex and the ion surface density

decreases as nl ¼ n0l0ð�ex=tÞ2. Assuming the acceleration
time is the laser pulse duration, t ¼ tlas, and writing the
laser pulse fluence as wlas ¼ cE2tlas=4� ¼ Itlas, where I is
the laser intensity, we find for the ion acceleration effi-
ciency

K eff ¼ 2Itlas
9m�c

2n0l0

�
tlas
�ex

�
2
: (20)

This efficiency is by the factor ðtlas=3�exÞ2 higher than in
the case of nonexpanding foil [1], which points towards a
way for enhancing the efficiency of the fast ion generation
required within the framework of the concept of fast igni-
tion with laser accelerated ions [19]. The efficiency en-
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FIG. 1 (color). (a) Laser pulse, reflected radiation, and MLT
shown as a superposition of the ion density and the electric field
z component in the (x; y) plane at t ¼ 112:5ð2�=!Þ. (b) Electron
and ion energy and the normalized Langmuir frequency corre-
sponding to the ion density versus time. Inset: Ion energy
spectrum at t ¼ 600ð2�=!Þ.
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hancement requires the laser pulse duration to be larger
than the foil expansion time. Assuming the expansion time
to be of the order of the inverse growth rate of the Raleigh-

Taylor instability, ðq?v2
E=l0Þ1=2 [4], with the wavelength of

transverse perturbations equal to the inverse laser pulse

waist, q? ¼ 2�=w, we find tlas=�ex ¼ vEtlasð2�=wl0Þ1=2.
For vE ¼ ca0ðme=m�Þ1=2ð!0=!peÞ, a0 ¼ 100, l0 ¼ 0:1	0,

and w � ctlas=3with tlas � 100 fs, it yields vE � 0:1c and
the factor ðtlas=�exÞ2 � 10–20.

As an illustration of the realization of the RPDA regime
in the interaction of a high intensity laser pulse with an
expanding plasma shell, we present the results of 2D
particle-in-cell (PIC) simulations of the dynamics of a
mass-limited target (MLT) in a strong laser field, Fig. 1.
We use the PIC code REMP [20]. The simulation box size is
600	� 100	, with mesh resolution of 20 cells per laser
wavelength. The number of quasiparticles is equal to 104.
The target has the form of an ellipsoid in the x; y plane with
horizontal and vertical semiaxes equal to 1	 and 7:5	. It is
initially localized at x ¼ 50	, y ¼ 0. The target is made of
hydrogen plasma with the ion-to-electron mass ratio equal
to 1836. The electron density corresponds to the frequency
ratio of !pe=! ¼ 6. A circularly polarized laser pulse is

excited at the left-hand side of the simulation box. It has a
super-Gaussian shape with a length of lx ¼ 25	, a width of
ly ¼ 25	, and with the dimensionless amplitude a ¼ 125.

The laser pulse compresses the MLT in the longitudinal
direction. The reflected light wavelength increases due to
its interaction with the MLT playing the role of a receding
relativistic mirror as seen in Fig. 1(a), where a superposi-
tion of the ion density and the z component of the electric
field in the x; y plane is shown for t ¼ 112:5ð2�=!Þ. The
MLT expands along the transverse direction. The laser
pulse interacts with an expanding thin dense shell in a
regime close to one discussed above. In Fig. 1(b) we
present the electron and ion energy and ion density versus
time. At the initial stage the ion density increases and then
tends to zero. The electron and ion energies grow and are of
the same order of magnitude. At the time, when the accel-
erated shell approaches the right-hand side boundary of the
simulation box, the protons reach the energy of 14 GeVand
the electron energy is equal to 27 GeV. In the inset of Fig. 1
we show the ion energy spectrum at t ¼ 600ð2�=!Þ,
which demonstrates the quasimonoenergetic peak with
the width of the order of 5%. If we estimate the energy
of the accelerated ions according to expression (4) for the
simulation parameters assuming that no deformation of the
MLT occurs, we find it to be of the order of 3 GeV. The
enhancement of the fast ion energy is naturally explained
by the MLT expansion.

In conclusion, the transverse expansion of a thin shell
accelerated in the RPDA regime results in the increase of
the ion energy and the acceleration efficiency at the ex-
pense of decreasing number of particles. In the relativistic

limit, the ions become phase locked with respect to the
electromagnetic wave, which is the indication of an un-
limited acceleration. This effect and the use of optimal
laser pulse shape provide a new approach for greatly
enhancing the energy of laser accelerated ions.
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