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We compute, for the first time, the order �4
s contributions to the Bjorken sum rule for polarized

electron-nucleon scattering and to the (nonsinglet) Adler function for the case of a generic color gauge

group. We confirm at the same order a (generalized) Crewther relation which provides a strong test of the

correctness of our previously obtained results: the QCD Adler function and the five-loop � function in

quenched QED. In particular, the appearance of an irrational contribution proportional to �3 in the latter

quantity is confirmed. We obtain the commensurate scale equation relating the effective strong coupling

constants as inferred from the Bjorken sum rule and from the Adler function at order �4
s .
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Introduction.—The Crewther relation [1,2] relates in a
nontrivial way two seemingly disconnected quantities,
namely, the (nonsinglet) Adler function [3] D and the
coefficient function CBjp, describing the deviation of the
Bjorken sum rule [4] for polarized deep inelastic scattering
from its naive-parton model value. The Adler function is
defined through the correlator of the vector current j�

3Q2�ðQ2Þ ¼ i
Z

d4xeiq�xh0jTj�ðxÞj�ð0Þj0i; (1)

as follows

DðQ2Þ ¼ �12�2Q2 d

dQ2
�ðQ2Þ; (2)

with Q2 ¼ �q2. In fact, the Adler function is the main
theoretical object required to study such important physical
observables as the cross section for electron-positron an-
nihilation into hadrons and the hadronic decay rates of both
the Z boson and the � lepton (see, e.g., [5]). The Bjorken
sum rule expresses the integral over the spin distributions
of quarks inside of the nucleon in terms of its axial charge
times a coefficient function CBjp,

�p�n
1 ðQ2Þ ¼

Z 1

0
½gep1 ðx;Q2Þ � gen1 ðx;Q2Þ�dx

¼ gA
6
CBjpðasÞ þ

X1
i¼2

�p�n
2i ðQ2Þ
Q2i�2

; (3)

where gep1 and gen1 are the spin-dependent proton and

neutron structure functions, gA is the nucleon axial charge
as measured in neutron � decay. The coefficient function
CBjpðasÞ ¼ 1þOðasÞ is proportional to the flavor-
nonsinglet axial vector current �c���5c in the corre-
sponding short distance Wilson expansion. The sum in
the second line of (3) describes for the nonperturbative
power corrections (higher twist) which are inaccessible for

pQCD. Within perturbative QCD, we define

DðQ2Þ ¼ dR

�
1þ 3

4
CFas þ

X1
i¼2

dia
i
sðQ2Þ

�
;

CBjpðQ2Þ ¼ 1� 3

4
CFas þ

X1
i¼2

cia
i
sðQ2Þ;

1=CBjpðQ2Þ ¼ 1þ 3

4
CFas þ

X1
i¼2

bia
i
sðQ2Þ;

where dR is the dimension of the quark color representation
(for QCD dR ¼ 3), as � �s=�, and the normalization
scale � is set �2 ¼ Q2. Note that we consider only the
so-called ‘‘nonsinglet’’ contribution to the Adler function
and do not write explicitly a common factor

P
iQ

2
i (withQi

being the electric charge of the i-th quark flavor) for RðsÞ.
The Crewther relation states that

DðasÞCBjpðasÞ ¼ dR

�
1þ �ðasÞ

as
KðasÞ

�
;

KðasÞ ¼ K0 þ asK1 þ a2sK2 þ a3sK3 þ . . . :

(4)

Here, �ðasÞ ¼ �2 d
d�2 asð�Þ ¼ �P

i�0�ia
iþ2
s is the QCD

� function describing the running of the coupling constant
as with respect to a change of the normalization scale �
and with its first term �0 ¼ 11

12CA � T
3 nf being responsible

for asymptotic freedom of QCD. The term proportional to
the � function describes the deviation from the limit of
exact conformal invariance, with the deviations starting in
order �2

s , and was suggested [2] on the basis of Oð�3
sÞ

calculations of DðasÞ [6,7] and CBjpðasÞ [8]. A formal
proof was carried out in [9,10]. The original relation with-
out this term was first proposed in [1] (see, also, [11]).
At order �s, the Crewther relation is evidently fulfilled.

The color structures which appear in dn and cn (hence, also
in bn) for n ¼ 1, 2, 3, and 4 are
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a1s : CF; a2s : C
2
F; CFTf; CFCA;

a3s : C
3
F; C

2
FTf; CFT

2
f; C

2
FCA; CFTfCA; CFC

2
A;

a4s :
dabcdF dabcdA

dR
;
nfd

abcd
F dabcdF

dR
; C4

F; C
3
FTf; C

2
FT

2
f; CFT

3
f;

C3
FCA; C

2
FTfCA; CFT

2
fCA; C

2
FC

2
A; CFTfC

2
A; CFC

3
A: (5)

Here, CF and CA are the quadratic Casimir operators of the
fundamental and the adjoint representation of the Lie
algebra, T is the trace normalization of the fundamental
representation, Tf � Tnf, with nf being the number of

quark flavors. The exact definitions of dabcdF dabcdA and
dabcdF dabcdF are given in [12]. For QCD ( color gauge group
SUð3Þ),
CF ¼ 4=3; CA ¼ 3; T ¼ 1=2; dR ¼ 3;

dabcdF dabcdA ¼ 15

2
; dabcdF dabcdF ¼ 5

12
:

(6)

Note, that all color structures, apart from the d2 terms
which appear first at order �4

s , involve at least one factor
CF. As a consequence, K0 must be set to zero. An inspec-
tion of Eqs. (4) and (5) clearly shows that the color struc-
tures which may appear in a coefficient Ki are identical to
those appearing in the coefficient bi�1 and ci�1, listed in
Eq. (5). Thus, at orders �2

s , �
3
s , and �4

s , the Crewther
relation puts as many as 2, 3, and, finally, 6 constraints
on the differences d2 � b2, d3 � b3, and d4 � b4, respec-
tively. The fulfillment of these constraints constitutes a
powerful check of the correctness of the calculations of
DNSðasÞ and CBjpðasÞ.

Indeed, at orders Oð�2
sÞ and Oð�3

sÞ, the results for
DNSðasÞ and 1=CBjpðasÞ

d2 ¼ � 3

32
C2
F þ CFTf

�
�3 � 11

8

�
þ CFCA

�
123

32
� 11�3

4

�
;

b2 ¼ � 3

32
C2
F þ CFTf

�
� 1

2

�
þ CFCA

�
23

16

�
;

d3 ¼ � 69

128
C3
F þ C2

FTf

�
� 29

64
þ 19

4
�3 � 5�5

�

þ CFT
2
f

�
151

54
� 19

9
�3

�
þ C2

FCA

�
� 127

64
� 143

16
�3

þ 55

4
�5

�
þ CFTfCA

�
� 485

27
þ 112

9
�3 þ 5

6
�5

�

þ CFC
2
A

�
90445

3456
� 2737

144
�3 � 55

24
�5

�
;

b3 ¼ � 69

128
C3
F þ C2

FTf

�
� 299

576
þ 5

12
�3

�
þ CFT

2
f

�
115

216

�

þ C2
FCA

�
1

576
þ 11

12
�3

�
þ CFTfCA

�
� 3535

864
� 3

4
�3

þ 5

6
�5

�
þ CFC

2
A

�
5437

864
� 55

24
�5

�

are well consistent [2] with all 5 constraints on the coef-

ficients d2, d3, b2, and b3 and imply

K1 ¼ CF

�
� 21

8
þ 3�3

�
;

K2 ¼ CFTf

�
163

24
� 19

3
�3

�
þ CFCA

�
� 629

32
þ 221

12
�3

�

þ C2
F

�
397

96
þ 17

2
�3 � 15�5

�
:

The next, Oð�4
sÞ, contribution to DðasÞ has been recently

computed [13] for QCD, i.e., setting the color structures to
their SUð3Þ numerical values [Eq. (6)]. The function
CBjpðasÞ is known to order �3

s only.
The importance of computation of the Oð�4

sÞ contribu-
tion to the both coefficients d4 and b4 for a generic color
gauge group comes from a few reasons.
First, the knowledge of c4 in the Bjorken sum rule is

vital for proper extraction of higher twist contributions.
Indeed, in [14], the recent Jefferson Lab data on the spin-
dependent proton and neutron structure functions [15–19]
were used to extract the leading and subleading higher
twist parameters �4 and �6. It has been demonstrated
that, say, the twist four term �4 approximately halves its
value in transition from LO to NLO, and from NLO to
NNLO. This duality between perturbative and nonpertur-
bative contributions has been observed before for the
structure function F3 [20] (for a related recent discussion,
see also [21]).
Second, the Bjorken sum rule provides us with a very

convenient definition of the effective strong coupling con-
stant (ECC) [19,22], namely,

6�p�n
1 ðQ2Þ ¼ gA½1� ag1ðQ2Þ�: (7)

This quantity is directly measurable down to vanishing
values ofQ2 and, due to Eq. (3), approaches to the standard
�sðQÞ at large Q2. It is by definition gauge and scheme
invariant. Another convenient ECC, aD, comes from the
Adler function [23]

DðQ2Þ ¼ 1þ aDðQ2Þ: (8)

As its perturbative expansion is available toOð�4
sÞ [13], the

knowledge of c4 will allow for the first time to compare
two ECC’s with the help of a commensurate scale relation
(CSR) [24] at an order unprecedented to date.
Third, the six constraints imposed by Eq. (4) provide a

highly nontrivial and welcome check of the calculation of
d4 in QCD [13]. In particular, in [25], we computed a part
of the full result for d4, namely, the term proportional to the
color structure C4

F. As is well known, an interesting ob-
ject—the � function of quenched QED—can be inferred
from the part of the Adler function which depends on CF

only by setting CF ¼ 1 and adjusting a global normaliza-
tion factor. The result (A � �

4� )
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�qQED ¼ 4

3
Aþ 4A2 � 2A3 � 46A4 þ

�
4157

6
þ 128�3

�
A5

(9)

revealed an unexpected [26] appearance of the irrational

constant �3 at five loops and cast doubt on the correctness
of the full QCD result for d4 [29].
Using the same techniques as in calculations of [8,13],

we have computed the Adler function and the function
CBjp for a general gauge group to order �4

s . Our results
read

d4¼dabcdF dabcdA

dR

�
3

16
�1

4
�3�5

4
�5

�
þnf

dabcdF dabcdF

dR

�
�13

16
��3þ5

2
�5

�
þC4

F

�
4157

2048
þ3

8
�3

�

þC3
FTf

�
1001

384
þ99

32
�3�125

4
�5þ105

4
�7

�
þC2

FT
2
f

�
5713

1728
�581

24
�3þ125

6
�5þ3�23

�
þCFT

3
f

�
�6131

972
þ203

54
�3þ5

3
�5

�

þC3
FCA

�
�253

32
�139

128
�3þ2255

32
�5�1155

16
�7

�
þC2

FTfCA

�
32357

13824
þ10661

96
�3�5155

48
�5�33

4
�23 �

105

8
�7

�

þCFT
2
fCA

�
340843

5184
�10453

288
�3�170

9
�5�1

2
�23

�
þC2

FC
2
A

�
�592141

18432
�43925

384
�3þ6505

48
�5þ1155

32
�7

�

þCFTfC
2
A

�
�4379861

20736
þ8609

72
�3þ18805

288
�5�11

2
�23 þ

35

16
�7

�

þCFC
3
A

�
52207039

248832
�456223

3456
�3�77995

1152
�5þ605

32
�23 �

385

64
�7

�
; (10)

b4¼dabcdF dabcdA

dR

�
3

16
�1

4
�3�5

4
�5

�
þnf

dabcdF dabcdF

dR

�
�13

16
��3þ5

2
�5

�
þC4

F

�
4157

2048
þ3

8
�3

�

þC3
FTf

�
� 473

2304
�391

96
�3þ145

24
�5

�
þC2

FT
2
f

�
869

576
�29

24
�3

�
þCFT

3
f

�
�605

972

�
þC3

FCA

�
�8701

4608
þ1103

96
�3�1045

48
�5

�

þC2
FTfCA

�
�17309

13824
þ1127

144
�3� 95

144
�5�35

4
�7

�
þCFT

2
fCA

�
165283

20736
þ 43

144
�3� 5

12
�5þ1

6
�23

�

þC2
FC

2
A

�
�435425

55296
�1591

144
�3þ55

9
�5þ385

16
�7

�
þCFTfC

2
A

�
�1238827

41472
�59

64
�3þ1855

288
�5�11

12
�23 þ

35

16
�7

�

þCFC
3
A

�
8004277

248832
�1069

576
�3�12545

1152
�5þ121

96
�23 �

385

64
�7

�
: (11)

All six constraints from the generalized Crewther relation are indeed met with

K3¼C3
F

�
2471

768
þ61

8
�3�715

8
�5þ315

4
�7

�
þC2

FTf

�
�7729

1152
�917

16
�3þ125

2
�5þ9�23

�
þCFT

2
f

�
�307

18
þ203

18
�3þ5�5

�

þC2
FCA

�
99757

2304
þ8285

96
�3�1555

12
�5�105

8
�7

�
þCFTfCA

�
1055

9
�2521

36
�3�125

3
�5�2�23

�

þCFC
2
A

�
�406043

2304
þ18007

144
�3þ2975

48
�5�77

4
�23

�
:

Note that coefficients in front of first three color structures
in Eqs. (10) and (11), (C4

F, nf
dabcdF dabcdF

dR
and

dabcdF dabcd
A

dR
) are

equal, as they should be. The C4
F term, in particular,

provides us with a beautiful confirmation of the correctness
of the result (9) for the qQED � function (the test was
originally suggested in [29]).

It is interesting to note that the results do not depend on
�n with n ¼ 2, 4, 6. Also, an unexpected feature of our
results is the separate proportionality all terms of highest
and subhighest transcendentality in a given loop order (that
is �23 and �7 at �

4
s , �5 at �

3
s and, at last, �3 at �

2
s) to �0. This

feature is not required by (4), the latter essentially con-
straints only the difference di � bi.

In numerical form, CBjp reads (with all color factors set
to their QCD values)

CBjp ¼ 1� as þ ð�4:583þ 0:3333nfÞa2s
þ a3sð�41:44þ 7:607nf � 0:1775n2fÞa3s
þ ð�479:4þ 123:4nf � 7:697n2f þ 0:1037n3fÞa4s :

(12)

It is of interest to compare the newly found coefficient in
front of the �4

s term with well-known predictions [30]

c
pred
4 ðnf ¼ 3; 4; 5; 6Þ ¼ �130;�58;�18; 22
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and

cexact4 ðnf ¼ 3; 4; 5; 6Þ ¼ �175:7;�102:4;�41:96; 6:2:

At last, we derive the CSR connecting the two ECC’s ag1
and aD as defined in Eqs. (7) and (8). Following Ref. [31],
we get for QCD

½1þ aDðQ?2Þ�½1� ag1ðQ2Þ� ¼ 1; (13)

with [a?D ¼ aDðQ?2Þ]

ln

�
Q?2

Q2

�
¼ �K1 þ a?D½�0K

2
1 þ 2d2K1 � K1 � K2�

þ ða?DÞ2
�
�0ð�6d2K

2
1 þ 2K2

1 þ 3K2K1Þ

� 2�2
0K

3
1 þ K1

�
3

2
�1K1 � 6d22 þ 2d2 þ 3d3

�

þ K2ð3d2 � 1Þ � K3

�

¼ �1:30823þ a?D½0:80241� 0:03933nf�
þ ða?DÞ2½�16:9020þ 2:62311nf

� 0:10202n2f�:
Let us emphasize that Eq. (13) constitutes a definitive and
precise prediction of QCD. Relating essentially two ob-
servables, it is devoid of scale and scheme ambiguities.
(For more details on CRS’s, see, e.g., [32].)

In conclusion, we want to mention that all our calcula-
tions have been performed on a SGI ALTIX 24-node IB-
interconnected cluster of 8-cores Xeon computers and on
the HP XC4000 supercomputer of the federal state Baden-
Württemberg using parallel MPI-based [33] as well as
thread-based [34] versions of FORM [35]. For evaluation
of color factors, we have used the FORM program COLOR

[36]. The diagrams have been generated with QGRAF [37].
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