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We compute, for the first time, the order a? contributions to the Bjorken sum rule for polarized
electron-nucleon scattering and to the (nonsinglet) Adler function for the case of a generic color gauge
group. We confirm at the same order a (generalized) Crewther relation which provides a strong test of the
correctness of our previously obtained results: the QCD Adler function and the five-loop S function in
quenched QED. In particular, the appearance of an irrational contribution proportional to {3 in the latter
quantity is confirmed. We obtain the commensurate scale equation relating the effective strong coupling
constants as inferred from the Bjorken sum rule and from the Adler function at order a?.
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Introduction.—The Crewther relation [1,2] relates in a
nontrivial way two seemingly disconnected quantities,
namely, the (nonsinglet) Adler function [3] D and the
coefficient function CB/7, describing the deviation of the
Bjorken sum rule [4] for polarized deep inelastic scattering
from its naive-parton model value. The Adler function is
defined through the correlator of the vector current j,

30°M1(Q) = i ] dxeOITj, () O0), (1)
as follows

D(Q*) = —127T2Q2 H(QZ) 2
with Q> = —¢2. In fact, the Adler function is the main
theoretical object required to study such important physical
observables as the cross section for electron-positron an-
nihilation into hadrons and the hadronic decay rates of both
the Z boson and the 7 lepton (see, e.g., [5]). The Bjorken
sum rule expresses the integral over the spin distributions
of quarks inside of the nucleon in terms of its axial charge
times a coefficient function C8/7,

Q2 — [ T6(x, 02) — ¢¢"(x, 0V)]dx

gA B (Qz)
= Ca, )+i:Z2 sz :

where g{” and g¢" are the spin-dependent proton and
neutron structure functions, g4 is the nucleon axial charge
as measured in neutron B decay. The coefficient function
CBir(a;) = 1+ O(a,) is proportional to the flavor-
nonsinglet axial vector current i y“ysi¢ in the corre-
sponding short distance Wilson expansion. The sum in
the second line of (3) describes for the nonperturbative
power corrections (higher twist) which are inaccessible for
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pQCD. Within perturbative QCD, we define

D(Q?) = dR<1 + %CF% + Zd,-aé(Qz)),

i=2

. 3 i )
B 2y — 1 — § i 2
c JP(Q ) =1 ZCFax + & Ciax(Q );

/CPP(Q?) = 1+ Cra, + 3. hial(0?),
i=2
where d is the dimension of the quark color representation
(for QCD dg = 3), a, = a,/m, and the normalization
scale u is set u> = Q. Note that we consider only the
so-called “‘nonsinglet” contribution to the Adler function
and do not write explicitly a common factor ¥ ;07 (with Q;
being the electric charge of the i-th quark flavor) for R(s).
The Crewther relation states that

Blay)

N

D(a,)CEir(a,) = dR[l + K(as)],

K(a,) = Ky + a,K, + a?K, + a’K; +

Here, B(ax) = M dﬂ2av(/~L) Zl>OBl ir2 is the QCD

B function describing the running of the coupling constant
a, with respect to a change of the normalization scale u
and with its first term By = {3 C4 — % ny being responsible
for asymptotic freedom of QCD. The term proportional to
the B function describes the deviation from the limit of
exact conformal invariance, with the deviations starting in
order a2, and was suggested [2] on the basis of O(a?)
calculations of D(a,) [6,7] and CP/P(a,) [8]. A formal
proof was carried out in [9,10]. The original relation with-
out this term was first proposed in [1] (see, also, [11]).

At order a;, the Crewther relation is evidently fulfilled.
The color structures which appear in d,, and c,, (hence, also
in b,) forn =1, 2, 3, and 4 are

)
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al: Cp, az: Cy, CpTy, CpCy,

ad: C3, CAT,, CpT2, C3Cy, CrTyCy, CrC2,

dgbed gabed p qabed gabed
dp dg

CiCy, C3T;Cy, CT2C,, C3C3, CpTyC2, Cr S (5)

, Cy, Ci Ty, Ci T}, Ci T}

Here, Cr and C, are the quadratic Casimir operators of the
fundamental and the adjoint representation of the Lie
algebra, T is the trace normalization of the fundamental
representation, Tf = Tnf, with n ’ being the number of
quark flavors. The exact definitions of d@<dd4bed and
dgbed dabed are given in [12]. For QCD ( color gauge group
SU@3)),

Cr=4/3, C,=3  T=1/2  dg=3,
d qabed _ 19 g rabed D (6)
d%hcddzbcd — 7, d%bcddclghcd — E

Note, that all color structures, apart from the d?* terms
which appear first at order a?, involve at least one factor
Cr. As a consequence, K, must be set to zero. An inspec-
tion of Egs. (4) and (5) clearly shows that the color struc-
tures which may appear in a coefficient K; are identical to
those appearing in the coefficient b;_; and c;_;, listed in
Eq. (5). Thus, at orders a2, a3, and a?, the Crewther
relation puts as many as 2, 3, and, finally, 6 constraints
on the differences d, — b,, d3 — b3, and d, — b4, respec-
tively. The fulfillment of these constraints constitutes a
powerful check of the correctness of the calculations of
DNS(a,) and CBiP(ay).

Indeed, at orders O(a?) and O(a?), the results for
DN5(a,) and 1/CBiP(a,)

& =-arorfa-g|raalm -2
b, = 332 C: + CFTf[ ;] + CFCA[?Z]
d3=—16—298C3 C%Tfl:—z—z-i-?é}—st]
+ CFT2:15541 195%] + CIZVCAI:_% - %53
2p)ramel- e+ 2s)
+ G ase — g & —555],
by = _16—298@ T [ 232 12 53] * CFT2[;2]
+ CZCAI:S;6 E53:| + CFTfCAI:_% — %fg

5437

+ = fs] + CFCZI: 364 2455]

are well consistent [2] with all 5 constraints on the coef-

ficients d,, ds, b,, and b3 and imply
21
K, = cF<— S+ 34“3),

163 19 629 221
K= G5~ 5 6) + e~ + )

24 32 0 12 %3
397 17

The next, O(a?), contribution to D(a,) has been recently
computed [13] for QCD, i.e., setting the color structures to
their SU(3) numerical values [Eq. (6)]. The function
CBir(a,) is known to order a only.

The importance of computation of the @(«¥) contribu-
tion to the both coefficients d4 and b, for a generic color
gauge group comes from a few reasons.

First, the knowledge of ¢, in the Bjorken sum rule is
vital for proper extraction of higher twist contributions.
Indeed, in [14], the recent Jefferson Lab data on the spin-
dependent proton and neutron structure functions [15-19]
were used to extract the leading and subleading higher
twist parameters u4 and we. It has been demonstrated
that, say, the twist four term w4 approximately halves its
value in transition from LO to NLO, and from NLO to
NNLO. This duality between perturbative and nonpertur-
bative contributions has been observed before for the
structure function F5 [20] (for a related recent discussion,
see also [21]).

Second, the Bjorken sum rule provides us with a very
convenient definition of the effective strong coupling con-
stant (ECC) [19,22], namely,

67 "(0%) = gall — a,, (071 )

This quantity is directly measurable down to vanishing
values of Q% and, due to Eq. (3), approaches to the standard
a,(Q) at large Q. It is by definition gauge and scheme
invariant. Another convenient ECC, ap, comes from the
Adler function [23]

D(Q%) =1+ ap(Q?). ®)

As its perturbative expansion is available to O(a¥) [13], the
knowledge of ¢4 will allow for the first time to compare
two ECC’s with the help of a commensurate scale relation
(CSR) [24] at an order unprecedented to date.

Third, the six constraints imposed by Eq. (4) provide a
highly nontrivial and welcome check of the calculation of
dy in QCD [13]. In particular, in [25], we computed a part
of the full result for d4, namely, the term proportional to the
color structure C}. As is well known, an interesting ob-
ject—the B function of quenched QED—can be inferred
from the part of the Adler function which depends on C
only by setting Cr = 1 and adjusting a global normaliza-
tion factor. The result (A = ;)
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4 4157
BIED = JAT 4A% — 2A3 — 46A% + ( 65 128{3)

()]

revealed an unexpected [26] appearance of the irrational
|

constant {3 at five loops and cast doubt on the correctness
of the full QCD result for d, [29].

Using the same techniques as in calculations of [8,13],
we have computed the Adler function and the function
CBiP for a general gauge group to order a?. Our results
read

@=?¢Zf?ﬂh%_zé —z]+nﬁﬁ§%3ffﬁ%—g+gg]+ [;5% %&]
LOT [t nh 10557]+C% ,%[f;g—%a+%§5+3§§]+CFT;[—6917—321 S 6+3G]
"‘CFT%CA[%_ 122;3{3_%55 _5532]+C%C/24|:_51982413421 _42242155 6505§5 115557]
e S e F e
b4:%jgm:li6_%f3_gfs]"'”f%[_g_é"‘%fs]"‘ [;(1)4512 253]
b e e e E e R IR ol a8 06 6 ag 0]
+C%TfCA_—%+%ég—%gs——a]wFT%cA[% B a4 +1§§]
CFC3|:82(21(;4823727 1507669 L 112155425 L +% e 385 §7i| (11
All six constraints from the generalized Crewther relation are indeed met with
(G gt 0+ T (e et 5t 98 + T~ e 6+ 56)

99757 8285
+ 3
2304 96
406043 18007 . 2975
+ + —-—)
2304 a4 8T g S 44)

1555 105

+ C%CA<

Note that coefficients in front of ﬁ[st tmee colog dstruptures
in Eqs. (10) and (11), (C}, ny=——+— and dRA ) are
equal, as they should be. The C} term, in particular,
provides us with a beautiful confirmation of the correctness
of the result (9) for the qQED g function (the test was
originally suggested in [29]).

It is interesting to note that the results do not depend on
{, with n =2, 4, 6. Also, an unexpected feature of our
results is the separate proportionality all terms of highest
and subhighest transcendentality in a given loop order (that
is {5 and {7 at af, {5 at @3 and, at last, {5 at a?) to By. This
feature is not required by (4), the latter essentially con-
straints only the difference d; — b;.

1055 2521 125

T {s _—§7)+CFTfCA< 9 36 —— 40— 3 — s 253)

|
In numerical form, C5/? reads (with all color factors set

to their QCD values)
CBiP =1 —a,+ (—4.583 + 0.3333nf)a§
+ al(—41.44 + 7.607n; — 0.1775nj%)a§
+ (—479.4 + 123.4n, — 7.697n} + 0.1037n})a§‘.
(12)

It is of interest to compare the newly found coefficient in
front of the a* term with well-known predictions [30]

A ny = 3,4,5,6) = —130, —58, —18,22
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and
ci"“‘(nf =3456) = —175.7, —102.4, —41.96, 6.2.

At last, we derive the CSR connecting the two ECC’s a 2
and ap as defined in Egs. (7) and (8). Following Ref. [31],
we get for QCD

[1+ap(@)][1 = a, (QD)] =1,

with [a}y, = ap(Q*?)]

13)

*2
ln(QQ2 ) = _Kl + ag[ﬂoK% + 2d2K1 - K] - Kz]

3

+ Ky3dy — 1) — K3]

= —1.30823 + a}[0.80241 — 0.03933n,]
+ (a3 [—16.9020 + 2.62311n;
—~0.1020213],

Let us emphasize that Eq. (13) constitutes a definitive and
precise prediction of QCD. Relating essentially two ob-
servables, it is devoid of scale and scheme ambiguities.
(For more details on CRS’s, see, e.g., [32].)

In conclusion, we want to mention that all our calcula-
tions have been performed on a SGI ALTIX 24-node IB-
interconnected cluster of 8-cores Xeon computers and on
the HP XC4000 supercomputer of the federal state Baden-
Wiirttemberg using parallel MPI-based [33] as well as
thread-based [34] versions of FORM [35]. For evaluation
of color factors, we have used the FORM program COLOR
[36]. The diagrams have been generated with QGRAF [37].

This work was supported by the Deutsche Forschungs-
gemeinschaft in the Sonderforschungsbereich/Transregio
SFB/TR-9 ““Computational Particle Physics” and by
RFBR Grant No. 08-02-01451. We thank V. M. Braun for
useful discussions.

*Permanent address: Institute for Nuclear Research,

Russian Academy of Sciences, Moscow 117312, Russia.

[1] R.J. Crewther, Phys. Rev. Lett. 28, 1421 (1972).

[2] D.J. Broadhurst and A.L. Kataev, Phys. Lett. B 315, 179
(1993).

[3] S.L. Adler, Phys. Rev. D 10, 3714 (1974).

[4] J.D. Bjorken, Phys. Rev. 163, 1767 (1967); Phys. Rev. D
1, 1376 (1970).

(5]
(6]
(7]

(27]
(28]
(29]
(30]
(31]
(32]
(33]
[34]

[35]
(36]

(37]

132004-4

K. G. Chetyrkin, J. H. Kuhn, and A. Kwiatkowski, Phys.
Rep. 277, 189 (1996).

S. G. Gorishnii, A.L. Kataev, and S. A. Larin, Phys. Lett.
B 259, 144 (1991).

L.R. Surguladze and M. A. Samuel, Phys. Rev. Lett. 66,
560 (1991).

S.A. Larin and J. A.M. Vermaseren, Phys. Lett. B 259,
345 (1991).

R.J. Crewther, Phys. Lett. B 397, 137 (1997).

V.M. Braun, G.P. Korchemsky, and D. Mueller, Prog.
Part. Nucl. Phys. 51, 311 (2003).

S.L. Adler, C.G. Callan, Jr., D.J. Gross, and R. Jackiw,
Phys. Rev. D 6, 2982 (1972).

J.A.M. Vermaseren, S.A. Larin, and T. van Ritbergen,
Phys. Lett. B 405, 327 (1997).

P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Phys. Rev.
Lett. 101, 012002 (2008).

R.S. Pasechnik, D. V. Shirkov, and O. V. Teryaev, Phys.
Rev. D 78, 071902(R) (2008).

P.E. Bosted et al. (CLAS Collaboration), Phys. Rev. C 75,
035203 (2007).

Y. Prok et al. (CLAS Collaboration), Phys. Lett. B 672, 12
(2009).

A. Deur et al., Phys. Rev. D 78, 032001 (2008).

A. Deur et al., Phys. Rev. Lett. 93, 212001 (2004).

A. Deur, V. Burkert, J.-P. Chen, and W. Korsch, Phys. Lett.
B 650, 244 (2007).

A.L. Kataev, G. Parente, and A.V. Sidorov, Nucl. Phys.
B573, 405 (2000).

S. Narison and V.I. Zakharov, Phys. Lett. B 679, 355
(2009).

G. Grunberg, Phys. Lett. B 95, 70 (1980).

S.J. Brodsky, S. Menke, C. Merino, and J. Rathsman,
Phys. Rev. D 67, 055008 (2003).

S.J. Brodsky and H.J. Lu, Phys. Rev. D 51, 3652 (1995).
P. A. Baikov, K. G. Chetyrkin, and J. H. Kiihn, Proc. Sci.,
RADCOR2007 (2007) 023 [arXiv:0810.40438].
Unexpected, because there existed a widespread belief that
the rationality property is not accidental but holds also in
higher orders [27,28].

C.M. Bender, R. W. Keener, and R. E. Zippel, Phys. Rev.
D 15, 1572 (1977).

D.J. Broadhurst, arXiv:hep-th/9909185.

A.L. Kataev, Phys. Lett. B 668, 350 (2008).

A.L. Kataev and V. V. Starshenko, Mod. Phys. Lett. A 10,
235 (1995).

S.J. Brodsky, G. T. Gabadadze, A. L. Kataev, and H.J. Lu,
Phys. Lett. B 372, 133 (1996).

S.J. Brodsky and J. Rathsman, arXiv:hep-ph/9906339.
M. Tentyukov et al., arXiv:cs/0407066.

M. Tentyukov and J. A.M. Vermaseren, arXiv:hep-ph/
0702279.

J. A.M. Vermaseren, arXiv:math-ph/0010025.

T. van Ritbergen, A.N. Schellekens, and J.A.M.
Vermaseren, Int. J. Mod. Phys. A 14, 41 (1999).

P. Nogueira, J. Comput. Phys. 105, 279 (1993).



