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By using a single formalism to handle charm, strange, and light valence quarks in full lattice QCD for

the first time, we are able to determine ratios of quark masses to 1%. For mc=ms we obtain 11.85(16), an

order of magnitude more precise than the current PDG average. Combined with 1% determinations of the

charm quark mass now possible this gives �msð2 GeVÞ ¼ 92:4ð1:5Þ MeV. The MILC result for ms=ml ¼
27:2ð3Þ yields �mlð2 GeVÞ ¼ 3:40ð7Þ MeV for the average of u and d quark masses.
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Introduction.—The masses of u, d, and s quarks are
some of the least well-known parameters of the standard
model. Even the most inaccurate lepton mass (that of the �)
is known to better than 0.01% and yet errors on light quark
masses of 30% are quoted in the Particle Data Tables [1].
The reason for the mismatch is the confinement property of
the strong force that obscures the connection between the
properties of the quark constituents and the hadron physics
that is accessible to experiment. To make this connection
requires accurate calculations in QCD and accurate experi-
mental results for appropriate hadronic quantities. A
method particularly well suited to this is lattice QCD. Here
we will demonstrate its use by determining mc=ms to 1%
and obtaining as a result 1.5% errors for light quark
masses, which brings them almost into line with those of
heavy quarks.

Heavy quark masses, mQ, can be determined accurately

because �sðmQÞ is relatively small. 1% errors for charm

and bottom quark masses have recently become possible
using Oð�3

sÞ calculations in QCD perturbation theory for
the heavy quark vacuum ‘‘bubble’’ [2] and therefore for the
energy-derivative (or time) moments of correlation func-
tions for a heavy quark-antiquark pair at zero momentum.
Since the scale of �s is naturally related to the relevant
heavy quark mass, the expressions can be evaluated accu-
rately. To extract the quark mass the perturbative result is
compared to a nonperturbative determination containing
information from experiment. For a 1��Q �Q configuration
moments of the experimentally measured cross section for
(eþe� ! �� ! hadrons) can be used after isolating the
heavy quark contribution and using dispersion relations
[3]. Alternatively, the time moments for heavy quark

current-current correlation functions of various JPC can be
directly determined in lattice QCD calculations that have
been tuned so that a charmonium or bottomonium mass
agrees with experiment [4,5]. The time moments must be
extrapolated to the zero lattice spacing (continuum) limit
before the comparison to QCD perturbation theory. These
two methods give results that agree, with 1% errors for

mcð3 GeVÞ in the MS scheme. The more traditional ‘‘di-
rect’’ lattice QCD method, although somewhat less accu-
rate, also gives results in good agreement [6]. We can
conclude from this that mc is now accurately known.
The strange quark mass,ms, being much smaller, cannot

be determined this way and is poorly known at present.
Instead of a direct determination of ms, however, we can
use the leverage of an accurate result for the ratio mc=ms

combined with the accuratemc above [7]. But simple ratios
of hadron mass differences give unreliable estimates of
mc=ms. Two such estimates,

mðBcÞ �mðBuÞ
mðBsÞ �mðBuÞ

¼ 11;
mð�cÞ �mðNÞ
mð�Þ �mðNÞ ¼ 6 (1)

differ by almost a factor of 2. The ratio of ms=ml [where
ml ¼ ðmu þmdÞ=2] is known to about 10% from ratios of
squared masses of K and � mesons using SU(3) chiral
perturbation theory [1]. Clearly neither ratio is determined
well enough this way to provide the accuracy we need,
because the relationship between hadron mass and well-
defined running quark mass is more complicated than these
simple ratios must assume.
Lattice QCD, on the other hand, can give very accurate

results for the ratio of two quark masses but only if the
same formalism is used for both quarks. This has already
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been used to give accurate results for ms=ml, although
neither ms nor ml is very well determined. Here, for the
first time, we give an accurate result for mc=ms by using
the same formalism for charm, strange and light quarks and
this enables us to cascade the accuracy of the heavy quark
mass down to the light quarks.

The lattice QCD calculation.—Lattice QCD gives direct
access to quark masses through the lattice QCD
Lagrangian. Tuning of the masses is done by calculating
an appropriate hadron mass and adjusting the quark mass
until the hadron mass agrees with experiment.
Experimental measurements of appropriate hadron masses
are extremely accurate in most cases, with errors at the
level of tenths or hundredths of a percent. To make maxi-
mum use of this precision we need to calculate the hadron
mass in lattice QCD with small statistical and systematic
errors. In particular it requires the full effect of sea quarks
in the hadron to be included. This is now possible in lattice
QCD [8]. Fixing the four quark masses (ml, ms, mc, mb)
from four ‘‘gold-plated’’ hadrons (�, K, �c, �) enables
other quantities to be calculated with errors of a few
percent and agreement with experiment is obtained [8,9].
This is an important test that QCD, with only one scale
parameter and one mass parameter per quark flavor, de-
scribes the full range of hadron physics consistently.

The lattice quark mass is a perfectly well-defined run-
ning quark mass. However, it is scheme dependent and so
varies with the discretization of the Dirac equation used in
the lattice calculation. For wider applicability it is more
useful to convert the lattice quark mass to a standard

continuum scheme such as MS. This renormalization has
been a major source of systematic error in previous deter-
minations of light and strange quark masses. The best
existing result for msð2 GeVÞ, with a 7% error, uses the
direct method of converting the tuned quark mass in the

lattice QCD Lagrangian to theMS scheme using �2
s lattice

QCD perturbation theory [10]. The error is dominated by
the error in the renormalization and it is the error that we
will remove here, by instead determining mc=ms accu-
rately. The Highly Improved Staggered Quark action
[11,12] allows us to use the same discretization of QCD
for both charm and strange quarks because it is a fully
relativistic ‘‘light quark’’ action that can also be used for
charm quarks. Then the mass renormalization factor can-
cels in the quark mass ratio.

We work with eight different ensembles of gluon field
configurations provided by the MILC collaboration. These
include the effect of u, d and s sea quarks using the
improved staggered quark (asqtad) formalism using the
fourth root ‘‘trick’’. This procedure, although ‘‘ugly’’,
appears to be a valid discretization of QCD [13–16].
Tests include studies of the Dirac operator and compari-
sons to effective field theories. Configurations are available
with large spatial volumes [>2:4 ðfmÞ3] at multiple values
of the light sea masses (using mu ¼ md ¼ ml) and for a
wide range of values of the lattice spacing, a. We use

configurations at five values of a between 0.15 and
0.05 fm with parameters as listed in Table I.
On these configurations we have calculated quark propa-

gators for charm quarks, strange quarks and light quarks
(again mu ¼ md ¼ ml) using the HISQ action. The nu-
merical speed of HISQmeans that we have been able to use
several nearby quark masses for charm and strange to allow
accurate interpolation to the correct values. Table II gives
masses for the goldstone pseudoscalar mesons made from
either a charm quark-antiquark pair or a strange one (the�c

and the �s), which are used for tuning. In the charm case,
as well as the quark mass, we list the coefficient of the
‘‘Naik’’ term in the HISQ action that corrects for discreti-
zation errors through ðam0cÞ4. The quark propagators are
generated from random wall sources and the goldstone
mesons have good signal and noise properties so the meson
masses can be determined to high precision using a stan-
dard multiexponential fit [17].
The meson masses can be converted to physical

units with a determination of the lattice spacing. On an
ensemble by ensemble basis this is taken from a pa-
rameter in the heavy quark potential called r1. Values for
r1=a determined by the MILC collaboration [14] are
given in Table I. They have errors of 0.3%–0.5%. The
physical value for r1 must then be obtained by com-
paring to experimentally known quantities and we use
the value 0.3133(23) fm obtained from a set of four such
quantities, tested for consistency in the continuum limit
[18,19].
Using the information about meson masses that we have

on each ensemble we can interpolate to the correct ratio for
am0c and am0s using appropriate continuum values for the
masses of the�c and�s. We correct the experimental value
of m�c

of 2.9803 GeV to m�c;phys ¼ 2:9852ð34Þ GeV. This
allows for electromagnetic effects (2.4 MeV) [18] and �c

annihilation to gluons (2.5 MeV) [11], both of which are
missing from our calculation, so increasing the �c mass.
We take a 50% error on each of these corrections and also
increase the experimental error to 3 MeV to allow for the
spread of results from different �c production mechanisms

TABLE I. Ensembles (sets) of MILC configurations used, with
size L3 � T and sea masses (� tadpole parameter u0) m

asq
0l and

m
asq
0s . The lattice spacing values in units of r1 after ‘‘smoothing’’

are given in column 2[14]. Column 6 gives the number of
configurations and time sources per configuration used for
calculating correlators.

Set r1=a au0m
asq
0l au0m

asq
0s L=T Ncf � Nt

1 2.152(5) 0.0097 0.0484 16/48 631� 2
2 2.138(4) 0.0194 0.0484 16/48 631� 2
3 2.647(3) 0.005 0.05 24/64 678� 2
4 2.618(3) 0.01 0.05 20/64 595� 2
5 3.699(3) 0.0062 0.031 28/96 566� 4
6 3.712(4) 0.0124 0.031 28/96 265� 4
7 5.296(7) 0.0036 0.018 48/144 201� 2
8 7.115(20) 0.0028 0.014 64/192 208� 2
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[1]. Since the total shift is only around 0.2% of the �c mass
it has a negligible effect as can be seen from our error
budget below.

The �s is not a physical particle in the real world
because of mixing with other flavor neutral combinations
to make the � and�0. However, in lattice QCD, the particle
calculated (as here) from only ‘‘connected’’ quark prop-
agtors does not mix and is a well-defined meson. Its mass
must be determined by relating its properties to those of
mesons such as the � and K that do appear in experiment.
From an analysis of the lattice spacing and ml dependence
of the �, K, and �s masses we conclude that the value of
the �s mass in the continuum and physical ml limits is
0.6858(40) GeV [18].

The connection between the MS mass at a scale � and
the lattice bare quark mass is given by [10,20]

�mð�Þ¼am0

a
Zmð�a;m0aÞ;

Zm¼1þ�s

�
� 2

�
logð�aÞþCþbðam0Þ2þ . . .

�
þ . . . :

(2)

From these two equations it is clear that

�mcð�Þ
�msð�Þ ¼ am0c

am0s

��������phys
; (3)

where phys denotes extrapolation to the continuum limit
and physical sea-quark mass limit.

On each ensemble the ratios we have for am0c=am0s

then differ from the physical value because of three effects:
mistuning from the correct physical meson mass; finite a
effects that need to be extrapolated away and effects be-
cause the sea light quark masses are not correct. We
incorporate these into our fitting function:

m0c

m0s

��������lat
¼m0c

m0s

��������phys

�
1þdsea

�msea
tot

ms

�

�
�
1þ X

i;j;k;l

cijkl�
i
c�

j
s

�
am�c

2

�
2kðam�s

Þ2l
�
: (4)

�c ¼
m�c;MC �m�c;phys

m�c;phys

; �s ¼
m2

�s;MC �m2
�s;phys

m2
�s;phys

(5)

are the measures of mistuning, where MC denotes lattice
values converted to physical units. The last bracket fits the
finite lattice spacing effects as a power series in even
powers of a. These can either have a scale set by mc (for
which we use am�c

=2) or by �QCD (for which we use

am�s
). i, j, k, l all start from zero and are varied in the

ranges: i, j � 3, k � 6, l � 2 with iþ jþ kþ l � 6.
Doubling any of the upper limits has negligible effect on
the final result. The prior on cijkl is set to 0(1). �m

sea
tot is the

total difference between the sea-quark masses used in the
simulation and the correct value for 2ml þms [18]. This
has a tiny effect and we simply use a linear term (adding

higher orders has negligible effect). The prior for dsea is
0.0(1). Figure 1 shows the results of the fit, givingmc=ms in
the continuum limit as 11.85(16) (�2=dof ¼ 0:42). The
error budget is given in Table III.
ms=ml is known to 1% from lattice QCD as a byproduct

of standard chiral extrapolations of m2
� and m2

K to the
physical point [21]. MILC quote 27.2(3) using asqtad
quarks [14]. Our HISQ analysis in [12] gave a result in
agreement at 27.8(3), using a Bayesian fit to a function
including terms from chiral perturbation theory up to third

TABLE II. Results for the masses in lattice units of the gold-
stone pseudoscalars made from valence HISQ charm or strange
quarks on the different MILC ensembles enumerated in Table I.
Columns 2 and 3 give the corresponding bare charm quark mass,
and Naik coefficient, respectively. Column 6 gives the bare
strange quark mass (	 ¼ 0 in that case).

Set am0c 1þ 	 am�c
am0s am�s

1 0.81 0.665 2.193 81(16) 0.061 0.504 90(36)

0.825 0.656 2.220 13(15) 0.066 0.525 24(36)

0.85 0.641 2.263 52(15) 0.080 0.578 28(34)

2 0.825 0.656 2.219 54(13) 0.066 0.524 58(35)

3 0.65 0.762 1.845 78(8) 0.0537 0.431 18(18)

4 0.63 0.774 1.808 49(11) 0.0492 0.414 36(23)

0.66 0.756 1.866 74(19) 0.0546 0.436 54(24)

0.72 0.72 1.981 14(15) 0.054 65 0.436 75(24)

0.753 0.70 2.042 93(10) 0.06 0.457 87(23)

0.063 0.469 37(24)

5 0.413 0.893 1.280 57(7) 0.0337 0.294 13(12)

0.43 0.885 1.316 91(7) 0.0358 0.303 32(12)

0.44 0.88 1.338 16(7) 0.0366 0.306 75(12)

0.45 0.875 1.359 34(7) 0.0382 0.313 62(14)

6 0.427 0.885 1.307 31(10) 0.036 35 0.305 13(20)

7 0.273 0.951 0.899 32(12) 0.0228 0.206 21(19)

0.28 0.949 0.915 51(9) 0.024 0.211 96(13)

8 0.195 0.975 0.671 19(6) 0.0165 0.154 84(14)

0.018 0.162 09(17)

FIG. 1 (color online). Gray points show the raw data for every
ratio of mc=ms on each ensemble (Table II); these ratios are fit to
Eq. (4). The dashed line and associated grey error band (and red
point at a ¼ 0) show our extrapolation of the resulting tuned
mc=ms to the continuum limit. Blue points with error bars are
from a simple interpolation, separately for each ensemble, to the
correct mc=ms, and are shown for illustration.
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order in ml and allowing for discretization errors up to and
including a4 and for mixed terms (i.e., ml-dependent dis-
cretization errors). A full error budget is given in Table III;
the data are given in [18].

Conclusions.—Our mc=ms can be used with any value
for mc to give ms. The best existing result [4] (converted

from nf ¼ 4 to 3) is �mð3Þ
c ð2 GeVÞ ¼ 1:095ð11Þ GeV or

�mð3Þ
c ð3 GeVÞ ¼ 0:990ð10Þ GeV. Dividing by 11.85(16)

gives �mð3Þ
s ð2 GeVÞ ¼ 92:4ð1:5Þ MeV and �mð3Þ

s ð3 GeVÞ ¼
83:5ð1:4Þ MeV.

Using the MILC values for ms=ml and mu=md (0.42(4)

[14]) we can then obtain �mð3Þ
l ð2 GeVÞ ¼ 3:40ð7Þ MeV

and �mð3Þ
l ð3 GeVÞ ¼ 3:07ð6Þ MeV; �mð3Þ

u ð2 GeVÞ ¼
2:01ð14Þ MeV and �mð3Þ

d ð2 GeVÞ ¼ 4:79ð16Þ MeV. The

values for all four quark masses are plotted in Fig. 2 in
comparison to the current evaluations from the Particle
Data Tables [1].

Thus our high accuracy on mc=ms allows us to leverage
2% accurate values for ms and ml that are completely
nonperturbative in lattice QCD, for the first time. Our ms

mass is higher, by around 1
, than our previous value of
�msð2 GeVÞ ¼ 87ð6Þ MeV which used 2-loop lattice QCD
perturbation theory [10]. Then the error was dominated by
unknown �3

s terms. Our new result, which does not have
this limitation, has an error almost 5 times smaller. Our

new error is almost an order of magnitude smaller than
other lattice QCD results from full QCD [22,23]. These use
direct methods of converting the lattice mass to the MS
mass, and have 10% errors.
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FIG. 2 (color online). Our results for the 4 lightest quark
masses compared to the current PDG evaluations (shaded bands)
[1]. Each mass is quoted in the MS scheme at its conventional
scale: 2 GeV for u, d, s (nf ¼ 3); mc for c (nf ¼ 4).

TABLE III. Error budgets for mc=ms and ms=ml.

mc=ms ms=ml

Overall r1 uncertainty 0.4% 0.1%

r1=a uncertainties 0.2 -

Continuum M�c
0.2 -

Continuum M�s
1.1 -

Finite volume - 0.3

a2 extrapolation, mq interpolns 0.4 0.8

Sea-quark mass extrapolation 0.0 0.2

Statistical errors 0.3 0.4

Total 1.3% 1.0%
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