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An exact solution representing black holes in an expanding universe is found. The black holes are

maximally charged and the universe is expanding with arbitrary equation of state (P ¼ w� with �1 �
8 w � 1). It is an exact solution of the Einstein-scalar-Maxwell system, in which we have two Maxwell-

type U(1) fields coupled to the scalar field. The potential of the scalar field is an exponential. We find a

regular horizon, which depends on one parameter [the ratio of the energy density of U(1) fields to that of

the scalar field]. The horizon is static because of the balance on the horizon between gravitational

attractive force and U(1) repulsive force acting on the scalar field. We also calculate the black hole

temperature.
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Black holes play a central role in astrophysics as well as
string theory, and may possibly be created at the LHC [1].
Not surprisingly, they have been studied intensively over
the past 35 years. Important progress has been made in
understanding the Hawking process [2] and the states
responsible for black hole entropy at the microscopic
level [3]. However many problems remain unresolved:
does cosmic censorship [4] hold, what happens when
black holes collide, how does accretion of matter affect
the thermodynamics of black holes, and how does it af-
fect the growth of black holes? To answer these dynami-
cal questions one needs time-dependent solutions of
the Einstein equations containing black holes. In this
Letter we shall focus on solutions representing black holes
in a background Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) universe.

There have been many previous attempts to obtain black
holes embedded in the FLRW universe. The Einstein-
Straus model is perhaps the simplest one [5]. It is a patch-
work of Schwarzschild black holes with an FLRW uni-
verse. However, these black holes are time symmetric, and
so they do not describe a dynamical black hole in a
universe.

One well known black hole candidate in the FLRW
universe is the McVittie solution [6], which is a spherically
symmetric, time-dependent solution of the Einstein equa-
tions. The solution approaches an FLRW universe at ‘‘in-
finity’’, and looks like a black hole near the ‘‘horizon.’’
However, as shown in [7], the McVittie solution is dis-
qualified as a black hole (or a point mass singularity) in the
FLRW universe. Recently, Sultana and Dyer constructed a
more sophisticated black hole solution in a dynamical
background by a conformal technique [8]. The matter
content is null dust and ordinary dust. The solution tends
to an Einstein–de Sitter spacetime asymptotically. This
model, however, violates the dominant energy conditions.

Assuming self-similarity, we can show that a regular
black hole may exist only in an accelerating universe, but

this requires numerical study [9]. The analytic solution
found by Carr and Hawking describes a self-similar space-
time with a regular black hole but it approaches asymptoti-
cally a ‘‘quasi’’ FLRW spacetime which has a deficit angle,
but not an exact flat FLRW spacetime [10]. There are also
discussions of ‘‘dark energy’’ accretion onto a black hole in
a universe [11].
If a cosmological constant is present, we have the

Schwarzschild–de Sitter (SdS) and Reissner–Nordström–
de Sitter (RNdS) solutions [12,13]. Although these space-
times are static, they may be converted by a coordinate
transformation into the form of a black hole in an expo-
nentially expanding universe [14]. Multi-black-hole solu-
tions in a de Sitter universe were found by use of extremely
charged black holes and their collision discussed [15,16].
This Kastor-Traschen (KT) solution is a time-dependent
generalization of the Majumdar-Papapetrou solution,
which describes extremely charged RN black holes [17].
Similar solutions were given in [18,19].
Another time-dependent cosmological black hole sys-

tem was found from the compactification of intersecting
brane solutions in higher-dimensional unified theory [20].
As clarified in [21] the global picture of dynamical solution
describes a multi-black-hole system in the expanding uni-
verse filled by ‘‘stiff matter.’’ We shall call it the MOU
solution.
Here we generalize these two solutions and present an

exact solution describing a cosmological multi-black-hole
system with an arbitrary power law expansion. This is a
solution of general relativity with a scalar field with an
exponential potential and two Maxwell-type U(1) fields
coupled to the scalar field. The solution has regular event
horizons, approaches asymptotically an exact flat FLRW
spacetime without a deficit angle, and no singularity exists
outside the horizons.
The above known solutions take the following form:

ds2 ¼ � �U�2d�t2 þ a2ð�tÞ �U2dr2: (1)
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The KT solution with N black holes located at the coor-
dinate position rðiÞ (i ¼ 1; � � � ; N) is given by

�U ¼ 1þXN

i¼1

QðiÞ
ajr� rðiÞj ; (2)

where QðiÞ is the charge of the ith black hole, and the scale
factor of the background universe is given by að�tÞ /
expðH0 �tÞ (H0: constant). It is asymptotically de Sitter
spacetime. The MOU solution discussed in [20,21] is given
by

�U ¼
�
1þXN

i¼1

QTðiÞ
a4jr� rðiÞj

�
1=4

�
1þXN

i¼1

QSðiÞ
jr� rðiÞj

�
3=4

;

where QTðiÞ and QSðiÞ are the conserved charges of time-

dependent and static branes, respectively, and the scale

factor is given by a ¼ ð�t=�t0Þ1=3, which also holds for an
expanding universe with stiff matter.

By changing the time coordinate, these solutions can be
rewritten in the form of a brane system, discussed in detail
in [20], as

ds2 ¼ �U�2dt2 þU2dr2; (3)

where

U ¼ HnT=4
T HnS=4

S ; (4)

HT ¼ t

t0
þXN

i¼1

QTðiÞ
jr� rðiÞj ; (5)

HS ¼ 1þXN

i¼1

QSðiÞ
jr� rðiÞj : (6)

Here nT and nS are appropriate non-negative real numbers
with the constraint nT þ nS ¼ 4, and t0 is a constant. The

transformation of the time coordinate is given by t=t0 ¼
a4=nT ð�tÞ, where t0 is fixed as t0 ¼ H�1

0 for the KT solution

and 3�t0=4 for the MOU solution, respectively. Setting nT ¼
4, we find the KT solution, while the case with nT ¼ 1
corresponds to the MOU solution.

Assuming the metric form (3)–(6), if we take an arbi-
trary real value for nT (or nS), we find that the scale factor a
in the form of (1) is given by any power function, i.e., a /
�tp, where p ¼ nT=nS. (We regard p ¼ 1 as an exponential
expansion.)

When the universe expands with an arbitrary power by a
scalar field, one needs an exponential-type potential [22].
In fact, if we have the universe filled by a scalar field with
the potential

V ¼ V0 expð����Þ; (7)

the scale factor increases as a / �tp with p ¼ 2=�2, where
�2 ¼ 8�GN is the gravitational constant. Thus we should

choose � ¼ ffiffiffiffiffiffiffiffiffi
2=p

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nS=nT

p
.

We shall therefore adopt the following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
R� 1

2
g��ð@��Þð@��Þ � Vð�Þ

� 1

16�

X

I¼S;T

nIe
�I��ðFðIÞ

��Þ2
�
; (8)

where g�� is a spacetime metric,� is a scalar field with the

potential Vð�Þ given by (7), and FðIÞ
��ðI ¼ S; TÞ are two

Maxwell-type U(1) fields, which couple to the scalar field
with the coupling constants �I. The vector potentials are

given by AðIÞ
� , and nI are their degeneracy factors.

The metric (3) with (4) plus

�� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTnS=2

q
lnðHT=HSÞ; (9)

�AðTÞ
t ¼ ffiffiffiffiffiffiffi

2�
p

H�1
T ; �AðSÞ

t ¼ ffiffiffiffiffiffiffi
2�

p
H�1

S ; (10)

with (5) and (6) and �2V0t
2
0 ¼ nTðnT � 1Þ=4 is really an

exact solution of the system (8), if we assume

� ¼ �T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nS=nT

q
; �S ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nT=nS

q
; (11)

and nT þ nS ¼ 4 [23]. For nT ¼ 4 and nT ¼ 1, we recover
the KT and MOU solutions, respectively.
The above solution with arbitrary nT gives a multi-

black-hole system in an expanding universe for which the
scale factor and effective equation of state are given by

a / �tp with p ¼ nT=nS, and P ¼ w� with w ¼ 2nS
3nT

� 1,

respectively. Note that w takes an arbitrary value in the
range of �1 � w � 1, corresponding to the value of 1 �
nT � 4.
We summarize some typical solutions in Table I.
In order to discuss the spacetime found here in detail, in

what follow, we consider a single black hole system. For
simplicity, we assume that two charges are equal, i.e.,
QT ¼ QS ¼: Q. We shall rewrite the metric (3) as

d~s2 ¼ ��2U�2d~t2 þU2ðd~r2 þ ~r2d�2
2Þ (12)

with (4) and HT ¼ ~tþ ~r�1, HS ¼ 1þ ~r�1, where � ¼
t0=Q, d~s2 ¼ ds2=Q2, ~r ¼ r=Q, and ~t ¼ t=t0 are dimen-
sionless variables. The metric (12) depends on only one
parameter �, whose physical meaning is given as follows:
The energy density of the scalar field is uniform at t ¼ t0,
which is given by ��ðt0Þ ¼ 3n2T=16t

2
0. While the total

density of the U(1) fields is evaluated on the horizon for
the static extreme RN black hole with the charge Q as
�Uð1ÞjH ¼ 1=Q2. For the time-dependent black hole, ��jH
and �Uð1ÞjH are different from the above values, but their

orders of magnitude are still the same. Thus we can claim
that � is related to the ratio of two energy densities at the
horizon as �2 � �Uð1Þ=��jH (see [21,24]). The limit of

� ! 1 gives the static extreme RN black hole.
The circumference radius R ¼ Q ~R, which is a geomet-

rically invariant variable, is given by
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~R ¼ ~rU ¼ ð1þ ~t ~rÞðnT=4Þð1þ ~rÞðnS=4Þ: (13)

The curvature singularity appears at ~r ¼ �1 and ~r ¼
�1=~t, where ~R vanishes. Analyzing the behavior of trap-
ping horizons in the limit of ~r ! 0 and near horizon
geometry as in [21], we find the horizon radius ( ~Rþ or
~R�) which satisfies the following equation:

�ð ~Rð4=nT Þþ � 1Þ ¼ ~R2þ; �ð ~Rð4=nT Þ� � 1Þ ¼ � ~R2�: (14)

The spacetimes are classified by their causal structure
into three types: Type I (nT < 2), Type II (nT ¼ 2), and
Type III (nT > 2).

In Type I, there are two horizons, ~Rþ and ~R�, which
are the roots of Eqs. (14). Since � > 0, we find ~Rþ >
1> ~R� > 0. We show the horizon radii in terms of � in
Fig. 1(a). For Type II, if � > 1 there are two horizons,
~Rþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�=ð�� 1Þp
and ~R� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�=ð�þ 1Þp
, but if � � 1, we

find only one horizon, ~R�. In Type III, if � > �cr, we find
two roots ~Rþ;1 and ~Rþ;2 ( ~Rþ;1 < ~Rþ;2) for the equation for
~Rþ (14), where �cr ¼ nnT=2T ðnT � 2Þ�ðnT�2Þ=2=2. From the
detail analysis of spacetime structure, we find there exist
two horizons; ~R� and ~RH ¼ ~Rþ;1 ( ~R� < 1< ~RH), but
~RC ¼ ~Rþ;2 is not a cosmological horizon except for the

KT solution [24]. The cosmological horizon turns out to be
time-dependent just as that in an accelerating universe
[25]. On the other hand, if � < �cr, we find one horizon,
~R�. If � ¼ �cr, there are two horizons, ~R� and ~Rþ;1 ¼ ~Rþ;2

(degenerate) [see Fig. 1(b)]. As we see from Table I, Type I

and III correspond to a decelerating and accelerating uni-
verses, respectively.
Since the present spacetime is spherically symmetric

and the near horizon is ‘‘static’’, we can calculate the
surface gravity (see [21] for details). Hence we find the
black hole temperatures on the horizons (TBH) by the
surface gravity �� as

Tð�Þ
BH ¼ ��

2�
¼ nT ~R

�ð2nS=nT Þþ1
�
16��2Q

j2� ~RðnS=nT Þ�1
� � nTj: (15)

We depict the behavior of the temperatures in Fig. 2. They
are finite and vanish in the limit of � ! 1, i.e., the extreme
RN spacetime.
It may be interesting to discuss the thermodynamics

because we can define the entropy and temperature in these
time-dependent spacetimes. We can easily extend the
present solution to arbitrary dimensions [24]. The details
including the analysis of global structure and study of
thermodynamical properties will be given elsewhere [24].
Some questions for future work are the following: (i) Can
we find more realistic black hole solutions? It may be
straightforward to include rotation (cf. [19]). This is under
investigation. As for neutral black holes in a universe, it
may be difficult to obtain the analytic solution because
such a system is non-BPS state even in the static case, and
the radius of a black hole increases in time due to accretion
of matter. (ii) Can we extend black hole thermodynamics to
time-dependent spacetimes? The present time-dependent
solution may provide a good tool for analyzing this ques-
tion. (iii) Can we discuss some dynamical process with the
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FIG. 1 (color online). Two horizon radii ( ~R� and ~Rþ or ~RH)
for nT ¼ 1 and 3. ~RH and ~RC, which is not a cosmological
horizon, degenerate at �cr ¼ 3

ffiffiffi
3

p
=2.

FIG. 2 (color online). Black hole temperatures on two horizons
( ~R� and ~Rþ or ~RH) for nT ¼ 1 and 3. ~TBH ¼ QTBH.

TABLE I. Some values of the typical parameters of a black hole system in a universe, for which expansion law and the equation of
state are given by a / �tp and P ¼ w�, respectively.

Type nT nS � �T �S p (expansion law) w �2V0t
2
0

I 0 4 1 1 0 0 (static) 0 0

1 3
ffiffiffi
6

p ffiffiffi
6

p � ffiffiffi
6

p
=3 1=3 (stiff matter) 1 0

4=3 8=3 2 2 �1 1=2 (radiation) 1=3 1=9
8=5 12=5

ffiffiffi
3

p ffiffiffi
3

p �2=
ffiffiffi
3

p
2=3 (dust) 0 6=25

II 2 2
ffiffiffi
2

p ffiffiffi
2

p � ffiffiffi
2

p
1 (Milne) �1=3 1=2

III 3 1
ffiffiffi
6

p
=3

ffiffiffi
6

p
=3 � ffiffiffi

6
p

3 (quintessence) �7=9 3=2
4 0 0 0 �1 1 (de Sitter) �1 3
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present or extended solutions? Black hole collision can be
discuss in the contracting universe (t0 < 0) just as the KT
spacetime. We can also discuss the brane collisions with
multi time-dependent branes, which is a generalization of
[26]. (iv) Some solutions have a link to intersecting brane
systems in higher-dimensional supergravity model. If nT is
a non-negative integer, we may regard nT and nS as num-
bers of branes. It is true for nT ¼ 1, in which case we can
derive the four-dimensional effective action (8) from com-
pactification of the time-dependent M2-M2-M5-M5 brane
system in 11-dimensional supergravity theory (see
Appendix in [21]). Hence it may be interesting to see
whether there is any fundamental or deep reason for this
link.

Work along these lines is in progress.
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