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2ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain

(Received 14 December 2009; published 2 April 2010)

We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity

realizes the spin-boson Dicke model. The quantum phase transition of the Dicke model from the normal to

the superradiant phase corresponds to the self-organization of atoms from the homogeneous into a

periodically patterned distribution above a critical driving strength. The fragility of the ground state due to

photon measurement induced backaction is calculated.
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A thermal cloud of cold atoms interacting with a single
mode of a high-finesse optical cavity can undergo a phase
transition when tuning the power of a laser field which
illuminates the atoms from a direction perpendicular to the
cavity axis [1–4]. Below a threshold power, the thermal
fluctuations stabilize the homogeneous distribution of the
cloud, and photons scattered by the atoms into the cavity
destructively interfere, rendering the mean optical field to
be zero. Above threshold, the atoms self-organize into a
wavelength-periodic crystalline order bound by the radia-
tion field which, in this case, is composed of the construc-
tive interference of photons scattered off the atoms from
the laser into the cavity. The same phase transition can
happen for Bose-Einstein condensed ultracold atoms that
are exempt from thermal fluctuations. For low pump power
at zero temperature, the homogeneous phase is stabilized
by the kinetic energy and the atom-atom collisions; a sharp
transition threshold is thus expected [5,6]. In both ex-
amples the self-organization is a nonequilibrium phase
transition with the distinct phases being stationary states
of the driven-damped dynamics.

In this Letter we show that the Hamiltonian underlying
the spatial self-organization is analogous to the Dicke-type
Hamiltonian [7] and the transition to the self-organized
phase can thus be identified with the superradiant quantum
phase transition [8]. The quantum motion of ultracold
atoms coupled to the radiation field, when it is confined
into a single mode selected by a cavity, leads to an exact
realization of the paradigmatic Dicke model with variable
parameters. The accessibility of such a Hamiltonian dy-
namics is limited by the coupling to the environment. We
explore how quantum noise infiltrates and depletes the
ground state [9], imposing thereby a condition on the
time duration allowed for the adiabatic variation of the
macroscopically populated ground state by means of tun-
ing an external parameter.

We consider a zero-temperature Bose-Einstein conden-
sate (BEC) of a number of N atoms of mass m which is
inside a high-Q optical cavity with a single mode of
frequency !C. Such a system has been realized and ma-

nipulated in several recent experiments [10–15]. The atoms
are coherently driven from the side by a pump laser field.
The pump laser frequency ! is detuned far below the
atomic resonance frequency !A, so that the atom-pump
(red) detuning �A ¼ !�!A far exceeds the rate of spon-
taneous emission. One can then adiabatically eliminate the
excited atomic level, and the atom acts merely as a phase
shifter on the field. The dispersive atom-field interaction
has a strength U0 ¼ g20=�A, where g0 is the single-photon
Rabi frequency at the antinode of the cavity mode. We
describe the condensate dynamics in one dimension along
the cavity axis x, where the cavity mode function is coskx.
The motion perpendicular to the cavity axis requires a
trivial generalization of the theory, and with a standing-
wave side pump the self-organization effect occurs quite
similarly in two and three dimensions [2].
The many-particle Hamilton operator in a frame rotating

at the pump frequency ! and with @ ¼ 1 reads

H ¼ ��Ca
yaþ

Z L

0
�yðxÞ

�
� @

2m

d2

dx2
þU0a

yacos2ðkxÞ

þ i�t coskxðay � aÞ
�
�ðxÞdx; (1)

where �ðxÞ and a are the annihilation operators of the
atom field and the cavity mode, respectively. The cavity
length is L, the detuning �C ¼ !�!C is the effective
photon energy in the cavity. Atom-atom s-wave scattering
is neglected. Besides the dispersive interaction term
U0cos

2kx, there is another sinusoidal atom-photon cou-
pling term describing an effective cavity pump with the
amplitude �t ¼ �g0=�A, where � is the Rabi frequency
of the coupling to the transverse driving field. This is a
four-wave mixing of the laser pump, the cavity field mode,
the condensate, and its collective motional modes, which
was also the process underlying the light amplification in a
Raman transition between the BEC recoil states, and ob-
served in the stimulated directional emission from a cigar-
shaped condensate into free space [16].
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Self-organization is a transition from the homogeneous
to a �-periodic distribution. The minimum Hilbert space
for the atom field required to describe this transition is
spanned by two Fourier-modes,

�ðxÞ ¼ 1ffiffiffiffi
L

p c0 þ
ffiffiffiffi
2

L

s
c1 coskx; (2)

where c0 and c1 are bosonic annihilation operators. In the
low excitation regime these two modes can be assumed to

form a closed subspace, so cy0c0 þ cy1c1 ¼ N is a constant

of motion. On invoking the Schwinger representation in

terms of the spin Ŝ with components Ŝx ¼ 1
2 ðcy1c0 þ cy0c1Þ,

Ŝy ¼ 1
2i ðcy1c0 � cy0c1Þ, and the population difference Ŝz ¼

1
2 ðcy1c1 � cy0c0Þ, the Hamiltonian Eq. (1) confined into the

two-mode subspace reads

H ¼ ��Ca
yaþ!RŜz þ iyðay � aÞŜx=

ffiffiffiffi
N

p

þ uaya
�
1

2
þ Ŝz=N

�
; (3)

where �C ¼ �C � 2u, !R ¼ @k2=2m, u ¼ NU0=4, and

y ¼ ffiffiffiffiffiffiffi
2N

p
�t. In the first line one can recognize the

Dicke-model Hamiltonian. The virtue of this realization
is that the energy term �C and the coupling constant y are
tunable, this latter via the transverse driving amplitude �t.
The last term is inherent to the BEC-cavity system; how-
ever, it does not essentially change the conclusions if juj<
j�cj. This condition has to be fulfilled so that the neglect of
the next excited Fourier mode c2 cos2kx can be justified in
Eq. (2). We will restrict the discussion to the case �C < 0,
which is required to avoid the motional heating induced by
the slightly retarded cavity field [5].

The thermodynamic limit is defined as N ! 1 and V !
1, while the atom density � / N=V is kept constant. The
coupling constants u and y have been introduced such that

they are proportional to the atom density, u / N=V and y /ffiffiffiffiffiffiffiffiffiffi
N=V

p
(there is a filling factor coefficient), and thus remain

constant in the thermodynamic limit. The ground state can
be determined as in Ref. [8]. Let us use the Holstein-
Primakoff representation in which the spin-N=2 degree
of freedom is expressed in terms of the bosonic operator

b such that Ŝ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � byb

p
b, Ŝþ ¼ by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � byb

p
, and

Ŝz ¼ byb� N=2. The Hilbert space for the operator b is
truncated, byb < N; the forthcoming results are therefore
exact only up to 1=N. The Hamiltonian transforms into

H ¼ ��Ca
yaþ!Rb

ybþ uayabyb=N

þ i

2
yðay � aÞ

�
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� byb

N

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� byb

N

s
b

�
: (4)

Next, let us employ the similarity transformation

D̂�1ð�ÞD̂�1ð�ÞHD̂ð�ÞD̂ð�Þ, with the displacement opera-

tors, D̂ð�Þ ¼ expf�ay � ��ag and D̂ð�Þ ¼ expf�by �
��bg, which does not change the spectrum of the
Hamiltonian. Formally, the transformation amounts to re-

placing b ! bþ �, a ! aþ �, and analogously for the
Hermitian adjoint operators in (4). Then,H is expanded up
to second order in the boson operators.
There is a pair of real �0 and �0 such that the linear

terms in the Hamiltonian in the displaced phase space

vanish for � ¼ i
ffiffiffiffi
N

p
�0 and � ¼ ffiffiffiffi

N
p

�0. They obey

ð�C � u�2
0Þ�0 ¼ y�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

0

q
; (5a)

ð!R þ u�2
0Þ�0 ¼ �y�0

1� 2�2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
0

q : (5b)

The trivial solution �0 ¼ �0 ¼ 0 always satisfies these
equations, which corresponds to the physical state of a
homogeneous condensate and no photon in the cavity.
When �0 � 0 and �0 � 0, the product of the two equa-
tions leads to a second-order algebraic equation and has a
physically sensible solution in the range 0<�2

0 � 1 if and

only if y > ycrit �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��C!R

p
. Then,

�2
0 ¼

�C

u

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u

�C

y2 � y2crit
y2 � u

�C
y2crit

vuut �
: (6)

For u ¼ 0, which amounts to the normal Dicke model, the
solution is �2

0 ¼ ðy2 � y2critÞ=2y2 with the same critical

coupling constant ycrit. The light shift term does not influ-
ence the threshold, because the zero mean fields make this
term vanish below threshold. Note also that this result for
ycrit corresponds to the one calculated from the instability
of the Gross-Pitaevski equation (GPE) [5], if this latter is
taken in the gc ! 0 (collisionless atoms) and � ! 0 (no
cavity loss) limit. The approach based on the GPE was
exempt from the two-mode approximation. On the other
hand, owing to the simplicity of the two-mode model, the
exact ground state, which might include macroscopic
quantum correlations, can be well approximated from the
Hamiltonian obtained up to the quadratic order:

H ¼ E0 þM0a
yaþ MxþMy

2 bybþ Mx�My

4 ðby2 þ b2Þ

þ i

2
Mcðay � aÞðby þ bÞ; (7)

where M0 ¼ ��C þ u�2
0, Mx ¼ !R þ u�2

0 �
y�0�0

3�2�2
0

ð1��2
0Þ3=2

,My ¼ !R þ u�2
0 � y�0�0

1
ð1��2

0Þ1=2
,Mc ¼

2u�0�0 þ y
1�2�2

0

ð1��2
0
Þ1=2 . The ground state is the vacuum state

of the normal mode oscillators which have the eigenfre-
quencies

!2� ¼ M2
0þMxMy

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

0�MxMyÞ2
4 þM0MyM

2
c

r
: (8)

Below threshold, the energy gap to the first excited state

vanishes as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y=ycrit

p
on approaching the critical point

(the exponent is thus 1=2). The ground state contains
excited Fock states of the uncoupled photon a and atomic
b modes because of the squeezing (with the coefficient
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Mx �My) and two-mode squeezing (with the coefficient

Mc) terms. Below threshold Mx �My ¼ 0; thus, the

ground state is simply the two-mode squeezed vacuum of
the a and bmodes, which is an entangled state [17,18]. The
quantum average of the photon and atom motion excita-
tions in the ground state can be seen in Fig. 1 together with
the mean field populations. The squeezing leads to a sin-
gular state at the critical point which amounts to a diver-
gence of the incoherent excitations hayai and hbybi.
Therefore, the detection of the continuous transition of
the mean field amplitudes �0 and �0 requires, e.g., homo-
dyne light measurement or the observation of the interfer-
ence between the homogeneous and the sinusoidal
components of the atom field.

The coupling to the environment amounts to a weak
quantum measurement of the coupled BEC-cavity system
and has a backaction on its state [9,19]. Therefore, even at
zero temperature, the ground state is being depleted in a
diffusionlike process. Similar decoherence is induced in
the phase contrast imaging of the transverse wave function
of a BEC by a dispersively coupled, free-propagating laser
beam [20,21]. We calculate the rate of diffusion out of the
ground state based on a Langevin equation approach. For a
compact notation the variables are arranged in a vector

R̂ � ½â; ây; b̂; b̂y�. The Heisenberg equations of motion
originating from the quadratic Hamiltonian (7) are linear
and are driven by quantum noise terms associated with the

photon field decay, @
@tR̂ ¼ MR̂þ �̂, where the matrix M

contains the coupling between the bosonic creation and

annihilation operators, and the noise source is �̂ ¼
½�̂; �̂y; 0; 0�. The only nonvanishing noise correlation func-
tion is h�ðtÞ�yðt0Þi ¼ 2��ðt� t0Þ, where 2� is the photon
loss rate. We neglect the dissipative��a and��ay terms,
because we are interested in the transient dynamics and not

in the stationary regime of the system. Initially, the domi-
nant effect in irreversibly escaping from the ground state
can be attributed to the infiltration of quantum noise (a
diffusion process).

The left and right eigenvectors lðkÞ and rðkÞ, respectively,
of M can be used to expand the fluctuation vector R̂ in

terms of normal modes: R̂ � P
k�̂kr

ðkÞ. By use of the

orthogonality ðlðkÞ; rðlÞÞ ¼ �k;l, where ða; bÞ is the scalar

product, the normal mode amplitudes are obtained as �̂k ¼
ðlðkÞ; R̂Þ. They evolve independently as

�̂ kðtÞ ¼ e�i!kt�̂kð0Þ þ
Z t

0
e�i!kðt�t0ÞQ̂kðt0Þdt0; (9)

where the projected noise is Q̂k � ðlðkÞ; �̂Þ. In the present
Hamiltonian problem, the normal modes form Hermitian

adjoint pairs �þ; �
y
þ with eigenfrequencies �!þ and

��; �y� with frequencies �!� from Eq. (8), respectively,
where each pair corresponds to one of the normal mode
oscillators of the quadratic Hamiltonian in (7). Second-
order correlations evolve as

h�̂kðtÞ�̂lðtÞi ¼ h�̂kð0Þ�̂lð0Þie�ið!kþ!lÞt

þ 2�
1� e�ið!kþ!lÞt

ið!k þ!lÞ lðkÞ�1 lðlÞ�2 : (10)

The first term represents the initial condition. The diffusion
is due to the second term in which the linear time depen-
dence can be written as being proportional to the sinðxÞ=x
function, where x ¼ ð!k þ!lÞ�t=2.
The total population in the excited states above the

ground state is given by h�y
þ�þ þ �y���i. Using (10) for

its time evolution, the first term vanishes in the ground

state, and, in the second term,!k þ!l ¼ 0 for both �y
þ�þ

and �y��� terms. Thus the time evolution leads exactly to a
linear increase of the excited population; the corresponding
diffusion rate is plotted in Fig. 2 with a dashed line. The
singularity at the critical point reflects that the excitation
energy of one of the normal modes tends to zero.
Let us calculate the diffusion in terms of measurable

quantities, such as the number of incoherent photons and
motionally excited atoms, �N ¼ hayaþ bybi. The inco-
herent population evolves as

�NðtÞ ¼ X
k;l

h�̂kðtÞ�̂lðtÞiðrðkÞ2 rðlÞ1 þ rðkÞ4 rðlÞ3 Þ: (11)

By using Eq. (10) and by approximating the sinðxÞ=x
function, the diffusion rate becomes

�NðtÞ
�t

�2�
X
k;l

lðkÞ�1 lðlÞ�2 ðrðkÞ2 rðlÞ1 þrðkÞ4 rðlÞ3 Þ�ð�t�1�j!kþ!ljÞ;

(12)

where� is the Heaviside function. If the ‘‘time step’’ �t is
shorter than any of the time periods !�1� , none of the pairs
(k; l) is cut off by the Heaviside function in the sum (12).
Then, it follows from the completeness relation

y/yc

a
a

b
b

0.06

0.04

0.02

0
2.521.510.50

1

0.8

0.6

0.4

0.2

0

FIG. 1 (color online). Photon (dashed red lines) and motion-
ally excited atom (solid blue lines) numbers in the ground state.
Thick lines represent the contributions form the mean fields (�2

0

and �2
0, these are the photon and atom excitation numbers

divided by N, respectively), which can be the order parameters
of the phase transition. Thin lines represent the incoherent
excitations due to the squeezing, given by the quantum averages
hayai and hbybi taken in the ground state. Parameters are �C ¼
�100!R, u ¼ �0:1!R.
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P
kr

ðkÞ
i lðkÞ�j ¼ �ij that the depletion rate is zero. On such a

short time the quantum noise is associated with the photon
field amplitudes a and ay, and normal-order products
vanish at zero temperature. Diffusion in the populations
is obtained when a coarse graining of the dynamics over a
longer �t is performed. We consider only the special case
j�Cj � !R, when there is a large difference between the
eigenfrequencies !�. The time step can be set such that
j�Cj�1 	 �t 	 !�1

R , and the two pairs (k; l) with !k ¼
!l ¼ �!� 
�!R also contribute to the double sum in
Eq. (12), in addition to the (k; l) pairs with !l ¼ �!k.
Then, the departure from the ground state appears as a
regular diffusion process in the motional excitation Fock
space with a finite rate even at the critical point, which is
plotted in Fig. 2 with solid line.

As �C is the far highest frequency in this example, there
is an alternative avenue to the depletion rate which relies
on the adiabatic elimination of the photon field variables, a
and ay, following the method of Ref. [19]. It leads to an
analytical approximation, which is plotted by a dash-dotted
line in Fig. 2,

�NðtÞ
�t

¼ �
M2

c

�2
C þ �2

: (13)

Below threshold, the diffusion rate is about !Rð�=j�CjÞ�
ðy=ycritÞ2. Adiabatic following of the ground state by means
of slow variation of the detuning (or the pump amplitude)

requires that the smaller excitation frequency, !� �
!R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðy=ycritÞ2

p
, be much larger than the diffusion. The

use of large detuning j�Cj � � removes the time limitation
imposed by the quantum noise. Although the critical point
can be adiabatically approached only as close as y=ycrit 	
1, which is a generic feature of criticality, it is an intriguing

possibility that matter wave and light field entanglement
can be adiabatically created in this critical system.
In conclusion, we have shown that the zero-temperature

limit of the atomic self-organization in a cavity corre-
sponds to the quantum phase transition given by the
Dicke model. This connection is principally different
from the proposals where some internal electronic dynam-
ics of the atoms in the cloud is involved [22–25]. The key
point here is that the energies of the decoupled systems are
much lower, the atom-field excitation is in the recoil fre-
quency range of kHz, that of the photon field is broadly
tunable, and the critical regime can be addressed in cur-
rently running experiments [26].
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FIG. 2 (color online). Diffusion out from the ground state. The
rate of increase of normal mode excitations (dashed line) and
that of photons and motionally excited atoms (solid line) with
coarse graining j�Cj�1 	 �t 	 !�1

R . The almost overlapping
dash-dotted line is derived from an adiabatic elimination method
and is given by the analytic result of Eq. (13). Parameters are
�C ¼ �100!R, u ¼ �0:1!R.
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