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Dimensionality crossover is a classical topic in physics. Surprisingly, it has not been searched in

micromagnetism, which deals with objects such as domain walls (2D) and vortices (1D). We predict by

simulation a second-order transition between these two objects, with the wall length as the Landau

parameter. This was confirmed experimentally based on micron-sized flux-closure dots.
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Dimensionality crossover is a rich topic in theoretical
and experimental physics. It has been widely addressed in
the frame of phase transition and critical exponents, e.g., in
magnetism [1,2]. Beyond this microscopic level it is known
that materials in an ordered state may be split in domains
[3]. In the study of magnetization configurations, a field
known as micromagnetism, objects have tentatively been
classified according to their dimensionality. Magnetic do-
mains are 3D, domain walls (DWs) are 2D, Bloch lines
(i.e., so-called either vortices or antivortices) are 1D, Bloch
points are 0D [4,5]. Each class may serve as a boundary to
the class of immediately greater dimensionality: DWs are
found at domain boundaries, Bloch lines inside domain
walls to separate areas with opposite winding [3,5], and
Bloch points separate two parts of a vortex with opposite
polarities [4,6]. Beyond magnetism, the notions of DWs
and vortices are shared by all states of matter ordered with
a unidirectional order parameter, i.e., characterized by a
vector field n with jnj ¼ 1. Liquid crystals in the nematic
state have a uniaxial order parameter. A strict analogue of
magnetic materials is the common case of slabs with
anchoring conditions at both surfaces: upon application
of a magnetic or electric field perpendicular to the easy
axis of anchoring a breaking of symmetry occurs known as
the Fredericks transition [7], transforming the order pa-
rameter in a unidirectional one. In this case both 180�
domain walls and vortices occur [8,9], whose dynamics,
topology and annihilation are being studied [10].

The study of magnetic DWs and vortices as objects that
can be moved [11] and modified [12–15] in their inner
structure is a timely topic, driven by proposals of their use
in memory [16] and logic [17] devices. Despite this and the
established dimensional classification mentioned above,
surprisingly the possibility of a dimensionality crossover
between a DW and a vortex has not been addressed. Thus,
beyond the aesthetics physical issue of dimensionality

crossover, the knowledge of how a DWmay switch revers-
ibly to a magnetic vortex should have a great importance in
understanding and controlling their static and dynamic
features. This transition has not been described either in
analogous cases such as liquid crystals.
In this Letter we report on a dimensionality crossover

from a DW (2D) to a vortex (1D). Although exemplified in
the particular case of magnetic materials, this effect should
occur in any state of matter characterized with a unidirec-
tional order parameter. It should be noted that a dimen-
sionality crossover was recently reported for the dynamics
of motion of a domain wall along a stripe, whose behavior
changes from two-dimensional pinning to one-dimensional
pinning on structural defects when the width of the stripe is
reduced below typically the distance between major pin-
ning sites [18]. This process however is very different,
since it pertains to dynamic processes, and also is extrinsic
because it relies on structural defects which depend on the
material, method of deposition, and nanofabrication.
For our demonstration we considered epitaxial micron-

sized magnetic dots in a flux-closure state. Depending on
the dot geometry (size and aspect ratio), the flux may be
closed around a vortex [12] or a DW of finite length [19].
The use of an epitaxial material ensures that the results are
not biased by microstructural pinning. Besides the dots
display sharp and well-defined edges, so that their dimen-
sions can be measured with accuracy. It is known that the
topology of Bloch DWs of finite length and of vortices is
identical, the former being obtained from the latter by a
continuous deformation [19–21]. Thus the question of a
transition from a DW to a magnetic vortex arises naturally.
We first show by simulation that a wall tends to collapse
into a vortex at a critical length of a few tens of nano-
meters. The transition is of second order, with the wall
length as the order parameter. This is confirmed quantita-
tively by experiments based on micron-sized self-
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assembled epitaxial dots, both with the dot geometry and
an external magnetic field as the driving parameter, show-
ing the generality and robustness of the transition.

Let us describe our methods. Micromagnetic simula-
tions of prisms were performed using GL_FFT, a finite-
differences code [22]. The cell size was 3:91� 3:91�
3:13 nm or lower and the parameters for bulk Fe were
used with an Fe(110) orientation [15]. Simulations of
trigonal fcc Co(111) dots were performed using
FEELLGOOD, a finite-elements code [23]. The mean cell

size was 2.6 nm. Both codes have been custom-developed
and are based on the temporal integration of the Landau-
Lifshitz-Gilbert equation. The experimental systems con-
sist of self-assembled micron-size Co(111) [24] and
Fe(110) [15] dots, epitaxially grown under ultrahigh vac-
uum using pulsed-laser deposition [25]. These were grown
on a single-crystalline 10 nm-thick W buffer layer depos-
ited on sapphire ð11�20Þ wafers, and capped with a 5 nm-
thick Au layer to prevent oxidation. The wafer was then
thinned by mechanical polishing and ion milling. Lorentz
microscopy was performed in the Fresnel mode using a
JEOL 3010 microscope equipped with a GATAN imaging
filter. In this mode DWs (vortices) are highlighted as dark
or bright lines ( dots) depending on the chirality of mag-
netization curling around the DW or vortex [26]. The
images are formed with a dedicated mini-lens, while an
axial magnetic field can be added using the conventional
objective lens.

We first present the results of simulation. As a textbook
case we consider flat prismatic dots with fixed height-over-
width ratio 0.2 and thickness 50 nm and above. The pris-
matic shape and use of finite differences ensure high
accuracy results for the description of the phase transition.
The length, taken along the in-plane Fe[001] direction, is
varied from 1 to 1.5 with respect to the width. As expected
for elongated dots of such thickness [19–21] a Landau state
occurs, displaying two main longitudinal domains sepa-
rated by a Bloch DW [Figs. 1(b) and 1(d)]. The DW dis-
plays perpendicular magnetization in its core, while it is
terminated at each surface by an area with in-plane mag-
netization, the Néel caps [27]. At each end of the DW the
magnetic flux escapes through a surface vortex. We define
the length of the DW as the distance between the projec-
tions into the film plane of the locii of these two vortices
[Fig. 1(d)]. From this definition a vortex is a DW with zero
length, such as found, e.g., for a dot with a square base
[Figs. 1(a) and 1(c)]. Series of simulations of the equilib-
rium state for variable dot length were performed. At each
stage the magnetization map is stretched or compressed
along the length to serve as a crude input for the map of the
next value of length, for which the equilibrium state is
again calculated. The series was performed once with
rising length, then again with decreasing length back to
the square base. This yielded identical results, ruling out
the possibility of metastable configurations biasing the
results. To avoid discretization artifacts the number of cells

was kept constant for all simulations of a dot of given
height. Instead, the length of each cell was varied progres-
sively to fit the dot length. The dependence of the DW
length with the dot length is shown on Fig. 2(a). For largely
elongated dots the wall length increases linearly with
slope 1. In this regime the two surface vortices are suffi-
ciently apart one from another to have a negligible inter-
action. Their position is essentially determined by the
minimization of the energy of the triangular closure do-
main along the two short sides of the dot. On the reverse in
the low-length regime the DW length decreases faster than
slope 1, so that the vortex state is reached before the dot has
a square base. We define the collapsed length as the
difference between the length of dot upon the collapse
and the asymptotic linear variation of wall length for an
elongated dot [Fig. 2(a)]. Plotting the square of the DW
length versus the dot length reveals a linear variation. The
crossover is therefore Landau-like, i.e., of second order.
Such transitions are associated with a breaking of symme-
try, which in the present case is whether the top surface
vortex shifts towards þx or �x. The results are qualita-
tively similar for other thicknesses. Figure 2(b) shows the
results of similar finite-element simulations applied to
trigonal Co(111) dots also 50 nm-thick, which display
the very same physics. This suggests that the crossover is
a general phenomenon, independent from the exact shape
of the system.
These predictions have been confirmed experimentally.

We first consider self-assembled face-centered cubic
Co(111) dots. These have a trigonal symmetry reflecting
their crystalline structure, with a base close to a regular
hexagon [Fig. 3(b)] [24]. Whereas previous studies on such
systems were dealing with very thin dots thus found in a

FIG. 1 (color online). Simulated magnetization states in flat
Fe(110) dots with size (a) 500� 500� 50 nm: vortex state and
(b) 500� 750� 50 nm: Landau state consisting of a Bloch wall
separating two antiparallel domains. The color stands for the
direction of magnetization along z, see right scale. In these open
views the only parts displayed as volumes are those were mz is
greater than 0.5. This highlights the central vortex or Bloch wall
(red) and the magnetization areas close to the vertical edges of
the prisms (blue). At all other places the surface displays
magnetization in the midheight plane. (c)–(d) Views in the xz
plane, corresponding to the framed areas in (a)–(b), respectively.
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nearly single-domain state [28], the thickness of our dots is
in the range 50–200 nm inducing flux-closure states around
a DW or vortex. These dots are perfectly suited for our
needs because owing to the natural spread of shape occur-
ring in self-assembly we can study the length of DWs as a
function of the dot aspect ratio, by a statistical investigation
of an assembly of dots over the same sample. For each dot
we measured the experimental DW length, and computed
the expected DW length predicted by the simple
van den Berg geometrical construction. This construction
is relevant for vanishing thickness and infinite dimensions
[29], and equals the dot asymmetry used in the simulations
so that a direct comparison with the data of Fig. 2 is
possible. Figure 3(b) summarizes this analysis, performed
over more than 30 dots. The collected results are quantita-
tively consistent with the simulation predictions. The ex-
perimental spread of points may be attributed first to errors
in the measurement of both the DW length and dot dimen-
sions, second to the spread of dot thickness as the collaps-
ing length slightly depends on the thickness. Despite this
spread, it shall be noticed that only vortices are observed

when the expected length lies below 40 nm. This cannot be
attributed to an experimental limitation to identify short
DWs, as many DWs with length below 40 nm have been
measured. These however all lie for expected wall length
above 40 nm. These correlations lie above statistical fluc-
tuations, which unambiguously demonstrates the collapse
of DWs towards vortices in a quantitative agreement with
simulations.
To demonstrate the generality and robustness of the

vortex-DW transformation we now consider an external
field as the driving parameter for the transition. In this case
we use Fe(110) dots, which by their crystallographic nature
are elongated [25] [Fig. 4(a)]. Upon applying the saturating
field with a tilt angle of a few degrees with respect to the
normal to the plane, and the in-plane component oriented
along its short length, the dot can be prepared in a diamond
state, i.e., consisting of two flux-closure parts with opposite
chiralities [Fig. 4(b)]. It happens that the application of a
tilted field of moderate magnitude affects the length of the
DWs [Fig. 4(c)] in a continuous way. The length of the DW
to the right of the dot decreases with increasing field. When
its reaches 21� 3 nm, which is comparable to the collapse
length mentioned above, a stochastic switching was ob-
served in real time between a Bloch wall and a vortex state
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FIG. 2 (color online). (a) Open symbols: length of the Bloch
wall in the simulated Landau state in an Fe(110) dot of thickness
50 nm, plotted versus the dot lateral asymmetry �l (length minus
width, see inset sketch). Linear line with slopeþ1: wall length in
the simple geometrical van den Berg model (black line). Dotted
line: asymptotic extrapolation from long dot, whose intercept
with the x axis defines the total collapsed. Inset: squared length
of Bloch wall, same x axis. (b) Similar simulations based on a
Co(111) dot, here 50 nm-thick. The inset shows the detailed
faceted shape of these dots [24].

FIG. 3 (color online). (a) True Z-scale 3D view of a 6� 6 �m
AFM image of self-assembled Co(111) dots (b) Open symbols:
DW length measured in Co(111) dots plotted versus the length
expected from the geometrical van den Berg construction. The
predictions from simulations for the estimated thickness of the
dot 116 nm are superimposed without adjustment, as guide to the
eye, both for Fe(110) (dotted line) and Co(111) (full line). Insets:
typical Co dot displaying a vortex (upper left) along with the
associated construction predicting a DW (lower right, central
blue line).
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with a characteristic time constant of 100 ms (see supple-
mentary material). This confirms that the top and bottom
surface vortices undergo a short-range attractive force,
which is the driving force for the transition.

To conclude, we addressed the dimensionality crossover
of a magnetic domain wall (DW, 2D) into a magnetic
vortex (1D). Simulations and experiments agree quantita-
tively that DWs collapse into vortices at a critical length of
a few tens of nanometers, which reveals a short-ranged
attractive force between the two ends of a DW. Beyond
physics aesthetics, our investigation should prove useful
when analyzing the increasing number of experiments
dealing with the behavior of domain walls and vortices
under the effect of pulsed magnetic fields or spin-polarized
currents, which undergo complex variations of shape and
length during their dynamics. This includes the case of,
e.g., the vortex state, where a domain wall dynamically
replaces the vortex [30], or the multiplication of vortices or
transformation of the type of domain wall in magnetic
stripes [31,32].
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FIG. 4 (color online). (a) True Z-scale 3D AFM view of a
typical Fe(110) dots, along with the geometry of the applied
field. (b) map of the in-plane magnetization of a similar dot
found in the diamond state, reconstructed from Fresnel images
taken at different defocusing. (c) Series of Fresnel images of the
same dot taken under a magnetic field applied tilted towards y.
The labels indicate the value of the y component of the field.
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