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Transport and elastic scattering times, �tr and �e, are experimentally determined from the carrier

density dependence of the magnetoconductance of monolayer and bilayer graphene. Both times and their

dependences on carrier density are found to be very different in the monolayer and the bilayer. However,

their ratio �tr=�e is found to be close to 1.8 in the two systems and nearly independent of the carrier

density. These measurements give insight on the nature (neutral or charged) and range of the scatterers.

Comparison with theoretical predictions suggests that the main scattering mechanism in our samples is

due to strong (resonant) scatterers of a range shorter than the Fermi wavelength, likely candidates being

vacancies, voids, adatoms or short-range ripples.

DOI: 10.1103/PhysRevLett.104.126801 PACS numbers: 73.21.Ac, 73.23.Hk

Since the discovery of the fascinating electronic prop-
erties of graphene [1] due to its electronic spectrum with
linear dispersion and a perfect electron-hole symmetry at
the Fermi level [2], the nature of defects has been shown to
play an essential role in determining the carrier density (nc)
dependence of the conductance. The wave vector and
energy dependences of the impurity potential are known
to determine the characteristic scattering times of the
carriers. It is important to distinguish the transport time
�tr, which governs the current relaxation and enters the
Drude conductivity (�), from the elastic scattering time �e,
which is the lifetime of a plane wave state [3]. Since �tr and
�e involve different angular integrals of the differential
cross section, they differ as soon as the Fourier components
of the potential depend on the wave vector q. A large ratio
�tr=�e indicates that scattering is predominantly in the
forward direction, so that transport is not affected much
by this type of scattering. This is the case in 2D electron
gases (2DEG) confined to GaAs=GaAlAs heterojunctions
with the scattering potential produced by remote charged
Si donors [4], where �tr=�e is found to be larger than 10.

The nature of the main scattering mechanism limiting
the carrier mobility in graphene is still subject to contro-
versy. It has indeed been shown [5–7] that ‘‘white noise’’
(q independent) scattering leads to a weak (logarithmic)
dependence of �ðncÞ, in contradiction with experiments
which typically find a linear increase. In contrast, scatter-
ing on charged impurities originates from a q dependent
screened Coulomb potential described in the Thomas-
Fermi approximation [8–10]. This leads to a linear �ðncÞ
both for a monolayer (ML) and a moderately doped bilayer
(BL). Recent experiments performed to probe this question
measured the change in � upon immersion of graphene
samples in high-K dielectric media. Their conclusions
differ [11]. Alternate explanations involve resonant scat-

tering centers with a large energy mismatch with the Fermi
energy of carriers [7,12].
In order to gain insight into the scattering mechanism in

graphene, we have extracted �e and �tr from magnetotran-
sport in monolayer and bilayer graphene samples. In high
magnetic field, when the cyclotron frequency is larger than
1=�e, the magnetoconductivity exhibits Shubnikov–
de Haas (ShdH) oscillations related to the formation of
Landau levels. The broadening of these levels at low
temperature yields �e, while the low-field quadratic mag-
netoconductivity yields �tr.
The samples were fabricated by exfoliation of natural

graphite flakes and deposition on a doped silicon substrate
with a 285 nm thick oxide. The carrier density can be tuned
from electrons to holes through the charge neutrality point
by applying a voltage on the backgate. The ML and BL
samples were identified using Raman spectroscopy. The
electrodes were fabricated by electron beam lithography
and either sputter deposition of 40 nm thick palladium
(samples A and B), or Joule evaporation of a bilayer
5 nmTi=70 nmAu (other samples C, D, and E). We
mostly discuss samples A and B, a ML and a BL of
respective dimensions W ¼ 1:6 �m, L ¼ 1:3 �m and
W ¼ 4:8 �m, L ¼ 0:7 �m, where L is the distance be-
tween the voltage probes covering nearly the entire sample
width W (see Fig. 1). The contact resistances were mea-
sured to be 20� for the BL and calculated to be 200� for
the ML, and were subtracted. The gate voltage Vg depen-

dence of � is shown for both samples for a range of
magnetic fields in Fig. 1. At zero field, one observes a
slightly sublinear increase of the conductance on both sides
of its minimum at the neutrality point. The mobility varies
between 3000 and 5000 cm2 V�1 s�1 for the ML, 3000 and
6000 cm2 V�1 s�1 for the BL. Above 2 T, steps in the
conductance of the ML occur near quantized values
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4ðnþ 1=2Þe2=h, as expected. The oscillations in the BL
(with a maximum of conductance at the neutrality point)
look more unusual but can be understood given the aspect
ratio of the sample (see below).

We now describe how we extract �tr and �e from the
magnetoresistance (MR) (see Fig. 2). The two-terminal
MR results from mixing of the diagonal (�xx) and off-
diagonal (�xy) components of the resistivity tensor

[13,14]. The degree of mixing depends on the aspect ratio
of the sample. For a square geometry, close to that of the

monolayer, RðBÞ ¼ ½�2
xx þ �2

xy�1=2, in a short wide sample

such as the bilayer RðBÞ ¼ ðL=WÞ½�2
xx þ �2

xy�=�xx.

Intermediate geometries can be calculated following the
model developed in [13]. It is then possible to reconstruct
the complete MR from the expressions of the resistivity
tensor [15] valid in the limit of moderate magnetic field
where ShdH oscillations can be approximated by their first
harmonics:

��xxðBÞ=�0 ¼ 4DT exp

�
� �

!c�e

�
cos

�
j�EF

@!c

��

�
;

�xyðBÞ ¼ �0!c�tr � ��xxðBÞ=2!c�tr;

(1)

where �0 ¼ 1=� is the zero-field resistivity and !c ¼
eB=m� is the cyclotron frequency, m� ¼ @kF=vF is the
cyclotron mass which depends explicitly on the Fermi
wave vector kF for the ML (constant Fermi velocity). On
the other hand, the bilayer’s dispersion relation is parabolic
at low energy and m� can be approximated by the effective
mass meff ¼ 0:035me, nearly independent of the carrier

density in the range of Vg explored where jEFj �
80 meV is smaller by a factor of 5 than the energy band
splitting [1]. This value ofmeff is confirmed by the analysis
of the temperature dependence of ShdH oscillations [16].
The phase �, either � or 2�, and the parameter j, either 1
or 2, depend on the nature of the sample (ML or BL). The
Fermi energy EF is @kFvF for the monolayer and
@
2k2F=ð2meffÞ for the bilayer. The prefactor DT ¼
�= sinhð�Þ with � ¼ 2�2kBT=@!c describes the thermal
damping of the oscillations.
To analyze the data we first deduce kF from the period-

icity of the ShdH oscillations function of 1=B. We think
that this determination is more reliable close to the neutral-
ity point where the sample is possibly inhomogeneous than
the estimation of nc ¼ k2F=� from the gate voltage and the
capacitance between the doped silicon substrate and the
graphene sample [17]. Knowing kF we then determine �tr
from the quadratic low-field magnetoresistance which is
found to be independent of temperature between 1 and 4 K:

RðBÞ � Rð0Þ ¼ h

2e2
L

W

1

kFvF�tr
	gð!c�trÞ2: (2)

We have used the relation � ¼ ��1
0 ¼ ð2e2=hÞkFvF�tr.

The dimensionless coefficient 	g, which depends on the

aspect ratio of the sample, is determined numerically fol-
lowing [13] and the experimental values of W and L. It is

FIG. 2 (color online). Analysis of the magnetoresistance. Left
panel: Magnetoresistance of monolayer sample A. Dots: experi-
mental points at T ¼ 1 K; Continuous line: fit according to
Eqs. (2) and (1). Inset: B2 dependence of the low-field magne-
toresistance for different gate voltages (Curves shifted along the
Y axis for clarity). �tr is extracted from the slopes of these curves
according to Eq. (2). Notice that the slope increases in the
vicinity of the Dirac point reflecting the divergence of the inverse
effective mass. Right panel: ShdH oscillations of the longitudinal
component of the resistivity in bilayer sample B for different
temperatures after subtraction of the quadratic background. The
Fermi wave vector kF and the elastic time �e are deduced from
the period and the decay of the oscillations with 1=B at low
temperature. Inset: Temperature dependence of the oscillations
amplitude normalized to T ¼ 0. Solid line: fit according to the
Lifshitz-Kosevich formula DT ¼ �= sinhð�Þ with � ¼
2�2kBT=@!c [15]. The effective mass determined from this fit
is meff ¼ 0:035� 0:002me in the whole range of gate voltage
investigated.

FIG. 1 (color online). Gate voltage dependence of the conduc-
tance at several magnetic fields, 1 T apart. The contact resis-
tances have been subtracted. Top panel: monolayer A. Bottom
panel: bilayer B. Inset: electron micrographs of the samples.
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found equal to 0:53� 0:01 and 0:84� 0:02 for our ML
and BL samples A and B, respectively. It is important to
note that this determination of �tr is independent of any
assumption of the contact resistance on our two-terminal
samples. We finally extract �e from the damping of the first
harmonic of ShdH oscillations in the resistivity tensor in
expð�
=BÞ where 
 ¼ �@kF=evF�e, see Eq. (1).

The kF dependences of �tr and �tr=�e are shown in Fig. 3
for samples A and B as well as three other ML samples,
consisting of another two-terminal sample C (very similar
to A) and two multiterminal samples (D and E) with Hall-
bar geometry (see [18] for more details). We observe
different behaviors for the ML samples, where �tr has a
minimum at the CNP, and the BL, where it has a maximum.
In all cases, despite rather large variations of �tr, �tr=�e is
nearly independent of kF. It is equal to 1:7� 0:3 for the
monolayers A, C, E and to 1:8� 0:2 for the bilayer in the
whole range explored, which corresponds to nc between
1:5� 1011 and 5� 1012 cm�2. That �tr=�e is of the order
but smaller than 2 indicates that the typical size of the
scatterers does not exceed the Fermi wavelength. We note,
however, that sample D exhibits a value of �tr=�e at high
electron doping which is larger than 2 (’2:4). The area
of this sample (12 �m2) is much larger than the area
( ’ 1 �m2) of all the other samples A, B, C, and E. We
suspect that this large sample contains more spatial inho-
mogeneities than the other smaller samples which could
explain a reduced value of �e.

Finally, it is also possible to fit �ðVgÞ at 5 T depicted in

Fig. 1 using the value of �e determined as described above.

Taking into account the geometry of samples A and B,
following [13], one can relate the contributions of the nth
Landau level to the conductivity tensor, �n�xx and �n�xy

within the semicircular model.

�n�xx�exp½� ln2ð��ð�nþ�nþ1Þ=2Þ=���2;
ð�n�xxÞ2þð�n�xy��0

xy;nÞð�n�xy��0
xy;nþ1Þ¼0:

(3)

Here, �n is the filling factor of the nth level, � is the filling
factor in between the nth and ðnþ 1Þth levels, and �0

xy;n is

the quantized Hall conductivity at the nth plateau equal to
4ðnþ 1=2Þe2=h and 4ne2=h for the ML and BL, respec-
tively. The width of Landau levels function of filling factor

�� and energy �E ¼ @
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!c=��e

p
[19] are related via

�� ¼ �E
2

@vF

ffiffiffiffiffiffiffiffiffi
�n�0

�B

q
: (4)

Good agreement between the experimental data and the
two-terminal GðVgÞ of the ML, calculated from the con-

ductivity tensor [13,14], is obtained taking the filling factor
dependence of �� from Eq. (4); see Fig. 4. For the BL, we
had to modify the semicircular relation in a similar way as
done in Ref. [14].
We now compare our results on �e and �tr to recent

theoretical predictions. We first consider scattering on
charged impurities [8,9]. In particular, the question of the
difference between �e and �tr has been addressed for a
graphene monolayer [20]. The minimum value of the ratio
�tr=�e is obtained when the impurities are located close to
the graphene foil, in which case it is expected to be 2—as a
result of the absence of backscattering—and independent
of nc. This is a bit larger than the measured ratio for most
samples. Screened charged impurities are characterized by
a screening radius 1=qsc, which in the Thomas-Fermi
approximation is given by 1=qTF � ��@vF=e

2kF, where

FIG. 3 (color online). kF dependence of �tr and �tr=�e ratio.
Left panel: monolayers A, C, D, and E. Right panel: bilayer B.
The continuous lines are the fits for samples A, B, and D
according to the resonant impurity model, Eq. (5). For samples
A B and C (two-terminal configuration) �tr was extracted from
the low-field magnetoresistance (crosses), whereas it was ex-
tracted from the zero-field conductivity for samples D and E.
Positive (negative) values of kF correspond to electron (hole)
doping. Lower panels: ratio �tr=�e where �e is deduced from the
fit of the low temperature decay of the ShdH oscillations. Dotted
lines figure the average value �tr=�e ¼ 1:8. Interestingly,
although the mobilities and accordingly �tr vary substantially
from one sample to the other (from 5000 to 800 cm2=V s from
samples A to E) the ratio �tr=�e is similar for all samples.

FIG. 4 (color online). Comparison of Gð�Þ at 5 T for samples
A and B with the expression of the conductance derived in
Ref. [13], taking the aspect ratio L=W of each sample and using
Eqs. (3) and (4) with �eðkFÞ determined above. The dashed
vertical lines indicate the positions of �n which, as expected,
are different for the mono �n ¼ �4ðnþ 1=2Þ and the bilayer
�n ¼ �4n. The conductance quantization is well obeyed for the
monolayer but not for the bilayer. This is well explained by the
aspect ratio of the bilayer sample [13,14].
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� is the appropriate dielectric constant. In the Born ap-
proximation, the transport time is �tr / q2scvF=kF. For a
monolayer, qTF=kF is a constant ’ 3 and both �tr and �e are
then expected to increase as kF, which is not what we
observe in Fig. 3 where the increase is sublinear. The
disagreement is even stronger for a bilayer, where the ratio
qTF=kF / 1=kF varies between 3 at high doping and 12
close to the neutrality point. The transport time is then
expected to vary linearly with nc, if the screening radius is
estimated as �1=kF, or to be independent of kF if esti-
mated as �1=qTF 	 1=kF [9], neither of which agrees
with our data; see Fig. 3.

An alternative explanation is resonant scattering result-
ing from vacancies or any other kind of impurities of range
R such that a & R 	 1=kF, where a is the carbon-carbon
distance, and with a large potential energy [7,12]. It is
characterized by a transport cross section

Atr ’ �2

kFln
2ðkFRÞ

: (5)

The resulting transport time �tr ¼ 1=ðnivFAtrÞ (ni is the
concentration of impurities) leads to a conductance in-
creasing as nc with logarithmic corrections for both the
ML and BL. In both cases, our extracted �trðkFÞ (see Fig. 3)
are compatible with the square logarithmic dependence of
Eq. (5). It is also possible to estimate the range of the

impurity potential 0:5 �A � R � 2:5 �A and the concentra-
tion of impurities ni ¼ ð8� 2Þ � 1011 cm�2, which turns
out to be identical for samples A and B. This is of the order
of the minimum value of the carrier density nmin ¼ 1:5�
1011 cm�2, extracted from the experiment. It is also inter-
esting to note that the minimum conductivity expected
for this resonant impurity model, �min ¼ ð2e2=�hÞ�
ðnmin=niÞln2ðR ffiffiffiffiffiffiffiffiffiffiffiffiffi

�nmin
p Þ ¼ 3:7e2=h and 4:5e2=h for the

ML and the BL, respectively, are similar to the observed
experimental values which are 3.3 and 4:1e2=h. This analy-
sis also corroborates our results on the ratio �tr=�e indicat-
ing scatterers with a range smaller than the Fermi
wavelength (but possibly of the order of or slightly larger
than the lattice spacing). Whereas the resonant character is
not essential for the validity of Eq. (5) for massive carriers
(corresponding to the bilayer) [21], it has been shown that
it is essential for massless carriers in the monolayer [22].
This resonantlike character, although not straightforward,
has been demonstrated in the case of scattering centers
created by vacancies in graphene over a wide range of
Fermi energies [23]. As shown in detail in [18], it is not
necessary to fine-tune kF to obtain the ln2 dependence in
Eq. (5).

In conclusion, our results indicate that the main scatter-
ing mechanism in our graphene samples is due to strong
neutral defects, with a range shorter than the Fermi wave-
length and possibly of the order of a, inducing resonant
(but not unitary) scattering. Likely candidates are vacan-
cies, as observed recently in transmission electron micros-
copy [24], voids, adatoms, or short-range ripples as

suggested in [25]. This does not exclude the presence of
long-range charged impurities responsible for electron-
hole puddles but their contribution to the scattering rates
1=�tr and 1=�e appears to be negligible in all the samples
investigated.
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