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We study a system of heteronuclear molecules on a triangular lattice and analyze the potential of this

system for the experimental realization of a supersolid phase. The ground state phase diagram contains

superfluid, solid, and supersolid phases. At finite temperatures and strong interactions there is an

additional emulsion region, in contrast with similar models with short-range interactions. We derive

the maximal critical temperature Tc and the corresponding entropy S=N ¼ 0:04ð1Þ for supersolidity and

find feasible experimental conditions for its realization.
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Long-range interactions are a key ingredient in many
models of strongly correlated electronic systems and frus-
trated quantum magnets [1]. Magnetic dipolar interactions
often occur in materials science and compete with short-
range ferromagnetic interactions, which leads to spa-
tially modulated phases [2]. The influence of long-range
interactions is currently also attracting a lot of interest in
cold atomic and molecular gases: the first signatures of
long-range interactions have been observed for magnetic
interactions in 52Cr [3,4], while electric dipole and
van der Waals interactions between Rydberg states give
rise to intriguing collective phenomena [5]. In addition,
there are big experimental efforts towards the realization of
quantum degenerate polar molecules [6–8], where the per-
manent dipole moment of the molecules gives rise to a
strong and highly tunable electric dipole-dipole interaction
[9–13].

In this Letter, we concentrate on one intriguing aspect of
dipolar systems, namely, the possibility to observe a super-
solid phase in a single component system, a phase charac-
terized by simultaneous diagonal (crystalline) and off-
diagonal (superfluid) long-range order. While the interpre-
tation of superphenomena observed with torsional oscilla-
tors in solid 4He remains a puzzle [14], supersolids might
be much easier to realize in lattices. While there exist a
number of lattice models of hard-core bosons [15–24],
soft-core bosons [25], and quantum spins [26,27] most of
these models are hard if not impossible to implement in a
material. Systems of cold heteronuclear molecules are
described by similar Hamiltonians but with longer range
dipolar interactions, which were also characteristic in pro-
posals for supersolids with excitons [28] and a mesoscopic
system of charged bosons [29]. Here, we demonstrate that
they show supersolidity under feasible experimental con-
ditions.

We consider bosonic polar molecules in a strong electric
field along the z direction, which induces the dipole mo-

ment dz � d; here d denotes the permanent dipole moment
of the heteronuclear molecule. The dominant interaction
between the polar molecules is then given by the dipole-

dipole interaction VðRÞ ¼ d2z
4��0

R2�3z2

R5 , where the strength

of the dipole interaction can be continuously tuned by the
strength of the electric field. In addition, the polar mole-
cules are confined into the xy plane by a strong transverse
harmonic confinement as can be easily achieved by a
strong one-dimensional standing laser along the z direc-
tion. The combination of strong transverse trapping and
dipole interaction creates a repulsive barrier [11], which
prevents the collapse naturally present in bosonic dipolar
gases [30]. The effective long-range two-dimensional po-
tential is then found by integrating over the z direction, and
reduces to the effective 2D interaction V2D

eff �D=r3. We

refer to Refs. [10,11] for a detailed discussion on how such
a potential can be tailored. Subjecting the molecules to a
triangular lattice created by three lasers in the xy plane, a
standard one-band tight binding analysis leads to an ex-
tended hard-core Bose-Hubbard model,
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Here, the first term describes the kinetic term with hopping
amplitude t,� is the chemical potential, V ¼ D=a3 the 2D
effective potential amplitude (a is the lattice spacing which
is set to unity, and Ri denote the normalized lattice vec-
tors). We work with periodic boundary conditions, the
hopping is set to unity, t ¼ 1, the linear system size is L,
and the filling factor denoted by n ¼ N=L2.
Our main results are the ground state phase diagram of

Fig. 1 featuring a superfluid, commensurate solid and
supersolid phase and the finite temperature phase diagram
for V=t < 15 at constant filling factor n ¼ 0:4. The entropy
S=N ¼ 0:04ð1Þ of the supersolid phase at the highest Tc is
approximately one third of the entropy found in the system
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with short-range interactions at the same temperature and
filling factor, but is still comparable to the lowest entropies
reached with bosonic ultracold alkali gases [31]. We find
transitions that are continuous or belong to the Spivak-
Kivelson bubble-type transition [32].

We study the Hamiltonian Eq. (1) by an unbiased and
accurate quantum Monte Carlo simulation using the worm
algorithm [33] in the implementation of Ref. [34]. To
efficiently handle the slow (but integrable) decay of the
potential in two dimensions, we replace the potential by a
tabulated potential which is summed over all periodic
images (like in an Ewald summation) and which is only
slightly different from 1=r3. In contrast to the short-range
model, simulations with repulsive long-range interactions
are notoriously more difficult and we suffer from the extra
complication of a diverging number of low-energy meta-
stable states [35]. Although this makes the identification of
the phases and phase transitions at very large interactions V
hard for current computational techniques, the supersolid
phase can still be unambiguously identified in the experi-
mentally most relevant regime. To identify the superfluid,
solid, and supersolid phases we measure the superfluid

density �s and the density wave structure factor S ~Q=L
2 ¼

hjPL2

k¼1 nke
i ~Q~rk j2i=L4 with ~Q ¼ ð4�=3; 0Þ.

Ground state.—We start our analysis with the ground
state phase diagram, shown in Fig. 1 for densities below
half filling (the results above half filling are similar). This
phase diagram has been obtained by extrapolating numeri-
cal data for different system sizes L ¼ 12, 18, 24, and
sometimes L ¼ 30 to infinity scaling the inverse tempera-
ture as �t ¼ L. The quality of the raw data from which the

phase diagram was obtained can be assessed in Fig. 2. For
V=t > 7:5ð5Þ there is an insulating commensurate solid at
filling factor n ¼ 1=3.
For densities below 1=3 a superfluid phase is reached,

similar to what is found for the short-range model [18–22],
but the transition here is different and of the bubble type
introduced by Spivak and Kivelson [32]: over a finite but
narrow range of chemical potentials, small crystallites
form an emulsion of bubbles inside a liquid.
For V ¼ 30 (not shown) we find the first evidence for

additional plateaus at various fillings below n ¼ 1=3which
are not present in the short-range model. With increasing
system size the number of plateaus grows and they are
separated by small superfluid regions. We expect that an
incommensurate, floating solid is formed in the thermody-
namic limit for strong interactions by analogy to the analy-
sis of Ref. [36]. Note that in the classical limit of zero
hopping the long-range model exhibits a devil’s staircase
(see Refs. [37,38] for 1d) of various solid phases.
Above the commensurate solid at n ¼ 1=3 we find a

continuous second-order phase transition belonging to the
3D XY model universality class to a supersolid phase,
similar to what occurs in the short-range model. While
near the tip the supersolid phase exists only over a narrow
filling factor range, it quickly extends (V=t ¼ 15) all the
way to half filling. For larger interactions (V=t > 20) and
close to half filling, the structure factor S ~Q and the super-

fluid density go down and supersolidity is lost for V=t ¼
30 at and near half filling. The stability of the superfluid
and supersolid phases has been addressed in Ref. [39].
Finite temperature.—To study the transitions at finite

temperature we work in the canonical ensemble at a filling

FIG. 2 (color online). Density n, superfluid density �s, and
structure factor S ~Q=L

2 for V=t ¼ 15 as a function of chemical

potential �. Statistical errors are smaller than symbol sizes if not
shown.

FIG. 1 (color online). Ground state phase diagram for the
Hamiltionian equation (1) around a filling factor n ¼ 1

3 with t

the tunneling amplitude and V the interaction strength. The
phases are a superfluid ‘‘SF’’, supersolid ‘‘SS’’, and a commen-
surate solid at filling factor n ¼ 1

3 . With the double line we

indicate a transition region of the Spivak-Kivelson bubble type
(emulsions) gradually going over to a region of incommensurate,
floating solids with increasing interaction strength. For large
interaction strength, and starting around half filling, the super-
solid phase is suppressed by emerging solid ordering (stripes at
half filling and incommensurate, floating solids at other fillings).

PRL 104, 125302 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 MARCH 2010

125302-2



factor n ¼ 0:4, see Fig. 3. An interaction strength of at
least V ¼ 10:0ð5Þ is needed in order to observe a super-
solid phase (see Fig. 4). For weak interactions we observe
first a Kosterlitz-Thouless transition between a normal
liquid and a superfluid phase, and a transition belonging
to the two-dimensional 3-state Potts model then leads to
the supersolid phase at lower temperature. When those two
continuous transition lines cross for V=t ¼ 11:8ð5Þ at a
temperature Tc=t ¼ 0:53ð8Þ, the entropy per particle is
S=N ¼ 0:04ð1Þ which is approximately one third of the
entropy found in the short-range model with the same
system parameters. For larger interaction strengths we
observe in our simulations the emergence of an emulsion
region with many metastable states between the normal
liquid and the supersolid phase. More analysis for larger
system sizes than what we can do in this study would be
needed to accurately study the melting transition and the
destruction of the superfluid order.

Experimental proposal.—We now outline optimal pa-
rameters for an experiment aiming at a homogeneous
supersolid phase in thermodynamic equilibrium. The ex-
perimentally optimal filling factor for the observation of
the supersolid phase is given by n � 0:4, as it exhibits the
largest superfluid fraction and consequently the highest cri-
tical temperature Tc. The supersolid phase exists over a fi-
nite range of densities in the phase diagram, and this allows
for flatter curvature in the trap center than with parabolic
traps.

From Fig. 4 we see that the optimal interaction strength
is V=t ¼ 11:8ð5Þ with Tc=t ¼ 0:53ð8Þ. The repulsion
should not be much larger than V=t ¼ 15 because of the
risk of hitting a large emulsion region from which experi-

ments will be unable to equilibrate due to the existence of
many metastable states. These parameters can be reached
using LiCs with a dipole moment d ¼ 6:3 D and an optical
transition at � � 940 nm for the optical lattice [40]. Then,
a polarization of the molecules with dz � 0:1d gives rise to
the interaction energy V � 0:23Er (here, Er � 1:6 kHz
denotes the recoil energy), and a relatively weak optical
lattice with Vlattice � 8Er is sufficient to drive the system
into the supersolid phase (Tc ¼ 0:8ð2Þ nK for LiCs); fine-
tuning of the parameters can be achieved by controlling the
interaction strength via the static electric field. Note, that
only a weak polarization of the molecules is required, and
consequently, the supersolid phase can also be reached for
polar molecules with weaker dipole moments such as RbCs
and LiRb.
Finally, we note that standard time-of-flight images are

an easy and direct tool to identify the different phases. In
the superfluid phase the algebraic decay of the Greens
function yields a strong peak at k ¼ 0 in the first
Brillouin zone. In the supersolid phase, six additional
peaks will show up in the corners of the first Brillouin
zone representing the broken lattice symmetry, which is
smoking gun evidence for a supersolid. In the insulating,
commensurate solid no peaks will be seen.
In conclusion, we have shown that fully polarized mole-

cules loaded into a triangular optical lattice exhibit a super-
solid phase. For weak interactions we have found in the
ground state a bubble transition [32] between a superfluid
(n < 1=3) and a commensurate solid (n ¼ 1=3) while a 3D
XY transition leads to supersolid phase at higher densities
when increasing the chemical potential. At finite tempera-
ture and fixed generic filling factor (say n ¼ 0:4), there is a
Kosterlitz-Thouless transition from a normal liquid to a
superfluid, and a 3-state Potts model transition to a super-

FIG. 4 (color online). Finite temperature phase diagram at
fixed filling factor n ¼ 0:4. The superfluid to normal liquid
and the superfluid to supersolid transitions are found to be
continuous (see text). After the Kosterlitz-Thouless (KT) and
two-dimensional 3-state Potts transition lines cross, an inter-
mediate phase of emulsions appears between the normal and the
supersolid phases. The hatched region denotes where we found
such emulsions for L ¼ 24.

FIG. 3 (color online). Superfluid density �s and structure
factor S ~Q=L

2 as a function of temperature T=t at fixed filling

factor n ¼ 0:4 and interaction strength V=t ¼ 12. At low tem-
peratures we have a supersolid phase with both commensurate,
solid order and a finite superfluid density. Although small system
sizes show a continuous transition reminiscent of a two-
dimensional 3-state Potts transition, a careful analysis reveals
nonmonotonicity and hysteresis in the structure factor for larger
system sizes, which is the first evidence for more complex
physics in the emulsion phase.
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solid. For larger interaction strengths [V=t � 12:0ð5Þ],
there is a wide range of temperatures in which an inter-
mediate phase of emulsions is found. The required tem-
perature for reaching supersolidity is feasible and the wide
range in filling factor allows for flexibility. We suggest an
optimal value of V=t � 12 and a filling factor of n ¼ 0:4
when Tc=t ¼ 0:53ð8Þ or S=N ¼ 0:04ð1Þ, corresponding to
Tc ¼ 0:8ð2Þ nK for LiCs. Experimentally, the difference
between the normal liquid, commensurate solid and super-
solid phases can be detected by time-of-flight images. Our
proposal is a very promising candidate for observing a
clean supersolid phase in optical lattices.
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