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We study the quantum phases of hard-core bosonic polar molecules on a two-dimensional square lattice

interacting via repulsive dipole-dipole interactions. In the limit of small tunneling, we find evidence for a

devil’s staircase, where Mott solids appear at rational fillings of the lattice. For finite tunneling, we

establish the existence of extended regions of parameters where the ground state is a supersolid, obtained

by doping the solids either with particles or vacancies. We discuss the effects of finite temperature and

finite-size confining potentials as relevant to experiments.
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Trapped atomic and molecular quantum gases allow the
realization of quantum lattice models of strongly interact-
ing particles [1]. The preparation of quantum gases of
ground-state polar molecules with strong electric dipole
moments opens the way to the study of lattice models with
tunable long-range interactions in atomic-molecular-
optical (AMO) setups [2,3]. In this context, the challenges
are to (i) identify the fundamental Hamiltonians underly-
ing the physics of strongly interacting dipolar gases,
(ii) analyze the associated quantum phases in the context
of their realization in AMO setups. This entails
(iii) studying the preparation and detection of these phases
in the presence of finite-size confining potentials and finite
temperature, as relevant to experiments.

In this Letter we analyze the microscopic tight-binding
Hamiltonian realizable with polar molecules trapped in
optical lattices under collisional stability. This is a 2D
Hubbard-like model for hard-core particles with infinite-
range interactions which we show to display novel quan-
tum phenomena with no counterpart in the atomic case.
These include (a) a devil’s staircase (DS) of Mott solids at
rational lattice fillings, and (b) supersolid phases (SS)
obtained by doping solids with either vacancies or addi-
tional particles. The infinite-range interactions stabilize the
supersolid as the low-energy phase for a large range of
system’s parameters, raising interesting prospects for its
realization with polar molecules. While various kinds of SS
phases (but not the DS) have been found in models with
shorter-range interactions [4–6] [e.g., nearest-neighbor
(NN) interactions with soft-core particles, or next-
nearest-neighbor (NNN) interactions], here the emphasis
is in simulating experimentally relevant systems with up to
N � 103 particles, at finite temperature, and for finite sizes
with harmonic confinement. Results for experimental ob-
servables with current AMO technology are presented.

We consider N bosonic polar molecules aligned by a

static electric field with induced dipole moment d ¼ ffiffiffiffi
D

p
,

implying strong dipole-dipole interactions. Collisional
stability is reached confining the molecules to a 2D plane,

using a strong transverse trapping field, e.g., a 1D optical
lattice, with a harmonic oscillator frequency !? to
prevent collapse due to attractive forces between aligned

dipoles, for interparticle distances larger than amin ¼
ð12D=m!2

?Þ1=5, with m the mass of a molecule [7]. An

additional 2D optical lattice with spacing a > amin and
harmonic oscillator frequency ! confines the particles in-
plane. The following single-band Hamiltonian for hard-
core bosons on a 2D square lattice is then obtained pro-
vided @!? � @!> fD=a3; kBTg, with T the temperature,
and with the requirement that the initial system has no
doubly occupied sites [8]

H ¼ �J
X

hi;ji
byi bj þ V

X

i<j

ninj

r3ij
�X

i

ð���i2Þni: (1)

The first and second terms in Eq. (1) describe the standard
kinetic energy with hopping rate J and the repulsive
dipole-dipole interaction with strength V ¼ D=a3 and

rij ¼ ji� jj, respectively; bi and byi are bosonic operators

with by2i ¼ 0 and ni ¼ byi bi; � is the chemical potential
and � ¼ m!2a2=2. For a gas of RbCs polar molecules
(d ¼ 1:25 D) with transverse and in-plane trapping
V0;?=ER ¼ 40 and V0=ER ¼ 4, respectively, and lattice

spacing a ¼ 400 nm> amin � 100 nm, !?=2� �
!=2�>D=ða3hÞ, with D=ða3hÞ ’ 3:5 kHz, and thus the
single-band Hamiltonian Eq. (1) is valid, provided T &
200 nK. With an in-plane tunneling rate J=h ’ 120 Hz, the
ratio J=V can be tuned to any value J=V * 0:03 by varying
the strength of the dc field. We have studied the quantum
phases of Eq. (1) by means of large scale Monte Carlo
simulations based on the Worm algorithm [9], using no
cutoff in the range of the dipole-dipole interaction [10].
While the focus is on experimentally relevant trapped
systems with finite T, we find it convenient to first discuss
the phase diagram in the homogeneous situation, and then
use these results to explain the phases for � � 0, and
observables in experiments. This is followed by more de-
tailed discussions of some aspects of the various phases.
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Homogeneous case.—Our exact results for � ¼ 0 are
summarized in Fig. 1(a), the computed zero-temperature
phase diagram as a function of � and J, in the range 1<
�=V < 6 and J=V > 0:02 (unshaded area). For small-
enough hopping J=V � 0:1, we find that the low-energy
phase is incompressible (@�=@� ¼ 0, with � the density–
filling factor) for most values of �. This parameter region
is labeled as DS in the figure and corresponds to the
classical devil’s staircase, i.e., a succession of incompress-
ible ground states, dense in the interval 0<�< 1, with a
spatial structure commensurate with the lattice for all
rational fillings [11], with no analogue for shorter-range
interactions. For finite J, three main solid Mott lobes
emerge with � ¼ 1=2, 1=3, and 1=4, named checkerboard
(CB), stripe, and star solids, respectively. The correspond-
ing ground-state configurations are sketched in panels (b)–
(d). These large Mott lobes are found to be robust in the
presence of a confining potential and finite T (see below),
and thus are relevant to experiments. We notice that the
shape of the solids with � ¼ 1=2 and 1=4 away from the tip
of the lobe can be shown to be qualitatively captured by
mean-field calculations, while this is not the case for the
stripe solid at filling 1=3 which has a pointylike structure
characteristic of fluctuation-dominated 1D configurations.
Mott lobes at other rational filling factors, e.g., � ¼ 1 and
7=24, are present, however not shown here.

For large enough J=V, the low-energy phase is super-
fluid, for all�. At intermediate values of J=V, however, we
find that by doping the Mott solids either with vacancies
(removing particles) or interstitials (adding extra particles)
a supersolid phase can be stabilized, with coexisting su-
perfluid and crystalline orders (we find no evidence of SS
in the absence of doping). We find that the solid-superfluid
transition consists of two steps, with both transitions of the
second order and the supersolid as the intermediate phase
(see Fig. 4 below). Remarkably, the long-range interactions
stabilize the supersolid in a wide range of parameters. For

example, a vacancy SS is present for densities 0:5>� *
0:43, roughly independent of the interaction strength. For
experiments, a fundamental question is the observability of
the phases described above for finite T. In particular, for
the SS phase we show in Fig. 5 that by increasing T it melts
into a featureless normal fluid via a two-step transition, the
intermediate phase being a normal fluid with finite density
modulations, similar to a liquid crystal.
Harmonic trap and experimental observables.—The re-

cent achievement of single-site addressability in optical
lattices using electron and optical microscopy allows for
a direct, in situ, observation of particle positions and
particle-particle correlations in experiments [12]. Thus,
key observables for experiments are the in situ density
distribution and particle correlations, from which the
phases above can be detected. The question is how the
phases described in Fig. 1 will be seen in an experiment.
Here, we provide snapshots of particle configurations for
realistic experimental situations with N � 103 particles
trapped with harmonic confinement, and small finite T.
In Fig. 2 we show snapshots of the spatial density

distribution (shown is a single quadrant). Each circle cor-
responds to a different site, and its radius is proportional to
the local density. In panels (a) and (b), � has been chosen
such that particles at the trap center are in the CB phase,
with very small T. The density profile shows a wedding-
cake structure, with concentric Mott lobes with density
� ¼ 1=2 and 1=4, analogous to the shells with contact
interactions [13]. However, while the system parameters
are the same in both figures, panel (a) shows regular CB
and star patterns, while in panel (b) extended defects are
present in the CB phase and the star is barely visible. This
is due to the different preparation of the states in panels (a)
and (b). In fact, in panel (a) we performed temperature
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FIG. 1 (color online). (a) Phase diagram of model (1) with
� ¼ 0 and at T ¼ 0. Lobes: Mott solids (densities indicated);
SS: supersolid phase; SF: superfluid phase. DS: devil’s staircase.
(b)–(d): sketches of the ground-state configuration for the Mott
solids, with density � ¼ 1=2, 1=3, and 1=4, respectively.

FIG. 2 (color online). Spatial density profile in 2D for N ’
1000 particles in a harmonic potential. Phases are indicated (CB,
SR, ST stand for checkerboard, star, and stripe solids, respec-
tively). (a)–(b) V=J ¼ 15, �=J ¼ 55, �=J ¼ 0:05, and T=J ¼
0:0377, with temperature annealing performed in panel (a);
(c) V=J ¼ 5, �=J ¼ 19, �=J ¼ 0:01 and T=J ¼ 0:1;
(d) V=J ¼ 20, �=J ¼ 51, �=J ¼ 0:04 and T=J ¼ 0:25.
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annealing of the system prior to taking the snapshot, while
this was not done in panel (b). We find that the defects in
(b) reflect the existence of a large number of low-energy
metastable states, which are a direct consequence of the
long-range nature of the interactions, and will be of rele-
vance for experiments.

Supersolid and stripe phases are shown in panels (c) and
(d), respectively. In panel (c), � has been chosen to realize
an extended vacancy SS region, surrounded by a super-
fluid. We notice that here a finite T ¼ 0:1J has been
chosen, compatible with the existence of the SS phase
(see below). The density distribution in the vacancy SS
looks similar to the ordered CB phase, even without an-
nealing. Self-annealing is here enabled by the (small)
superfluid component of the SS phase. Small coherence
peaks will be present in time-of-flight experiments, allow-
ing for a clear determination of this phase. Panel (d) shows
a disordered stripe-phase at the center, surrounded by an
extended Mott shell with � ¼ 1=4. The disorder is a result
of both finite T=J ¼ 0:25 and the fact that the stripe solid is
less robust towards quantum and classical fluctuations
compared to the CB and star ones.

These exact results for � � 0 confirm that the phase
diagram Fig. 1 is key to predict and interpret experimental
observables, assuming a local density approximation. In
the remainder of this Letter, we provide more details on the
phases described above.

Incompressible phases.—For eachMott lobe in Fig. 1(a),
the solid order is characterized by a finite value of the
structure factor SðkÞ ¼ P

r;r0 exp½ikðr� r0Þ�hnrnr0 i=N,

with k the reciprocal lattice vector for each solid. For the
CB, stripe, star solids, this is (�, �), (� 2�=3, 2�=3), and
(�, 0) [or (0, �)], respectively. The boundaries of the Mott
lobes have been calculated from the zero momentum
Green function (see, e.g., [14]), for linear system sizes up
to L ¼ 20 (CB and star lobes), and from �ð�Þ curves with
sizes up to L ¼ 24 (stripe lobe).

Interestingly, we find evidence for incompressible
phases in addition to those corresponding to the lobes in
Fig. 1. This is shown in Figs. 3(a) and 3(b), where the
particle density � is plotted as a function of the chemical
potential � for J=V ¼ 0:05, and 0.1, respectively. In the
figure, a continuous increase of � as a function of� signals
a compressible phase, while a solid phase is characterized
by a constant �. The main plateaux in panel (a) correspond
to the Mott lobes of Fig. 1, while the other steps are
incompressible phases, with a fixed, integer, number of
particles. This progression of steps is an indication of a
devil’s-like staircase in the density, the latter being fully
realized in the classical limit of zero hopping.

Since the simulations are necessarily performed for
finite L (with periodic boundary conditions) and T, only
the lobes with comparatively short periodicity (e.g., � ¼
1=2 and 1=4) and sizable gaps will be resolved in the
calculations. Consistently, we find that determining the
ground-state configuration for each DS step directly from
the simulation is often challenging, since: (i) for many

rational fillings [e.g., � ¼ 7=24 in panel (a)] it would
require to consider system sizes (much) larger than those
considered here, and (ii) the long-range interactions deter-
mine the presence of numerous low-energy metastable
states [15], which for finite T can result in defects or
disordered structures. However, we note that the practical
relevance of Mott lobes with large periodicity is somewhat
limited, since they will most likely not be observable in
experiments, as shown above.
Supersolid phases.—A very different situation is shown

by the behavior of �ð�Þ immediately above the star plateau
of panel (a), and below the CB plateau of panel (b) in
Fig. 3. Here the density grows smoothly with increasing�,
signaling a fluid phase, and the superfluid stiffness �s ¼
ThW2i is finite, with W the winding number. Remarkably,
and in contrast to previous studies with shorter-range in-
teractions, we find that the appropriate structure factor
SðkÞ corresponding to these solids remains finite for
chemical potentials � below and above each Mott lobe,
signaling the existence of both vacancy-induced and
particle-induced supersolidity, with no indication of phase
separation. We measured SS behavior around both Mott
lobes with � ¼ 1=2 and 1=4, for J=V * 0:05 and 0.067,
respectively. As an example, Fig. 4(a) shows a vacancy-
induced SS for J=V ¼ 0:2. For an extended range of
densities, both �s and the static structure factor Sð�;�Þ,
are finite and size-independent. We find evidence that the
SS melts into a superfluid via a second-order Ising-type
quantum phase transition. This is shown by the crossing of

the curves in Fig. 4(b), where we plot SðkÞL2�=� as a
function of density [the critical exponents 2�=� ¼
1:0366ð8Þ correspond to the three-dimensional Ising uni-
versality class [16] ]. The SS persists for smaller J=V
ratios, however the �s tends to decrease with J=V. While
the results above point to a generic mechanism for solid-
liquid transitions in 2D with the SS as the intermediate
phase [17], we have not found evidence of SS phases below
and above the stripe lobe. This may be due to an extremely
low T for superfluidity here (we have used Tmin ¼ J=3L),
or to the strong 1D character of the stripe lobe.
Finite-T.—We studied the melting of the SS into a

normal phase with increasing T, for the case of vacancies
below the CB solid, with J=V ¼ 0:1. Figure 5 shows �s

and Sð�;�Þ vs T. The melting of the SS proceeds through

FIG. 3 (color online). � vs �. (a) Solids and SS for a system
with linear size L ¼ 12 and J=V ¼ 0:05. Some � are indicated.
(b) superfluid and vacancy-SS for L ¼ 16 and J=V ¼ 0:1.
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two successive transitions. First, it melts into a liquidlike
phase reminiscent of a liquid crystal, with zero �s and
finite Sð�;�Þ. The drop of �s for T ’ 0:1J in Fig. 5 signals
a transition of the Kosterlitz-Thouless type, with critical
temperature TKT ¼ ��s@

2�=2m, and m ¼ 1=2Ja2. Upon
further increasing T, we find that Sð�;�Þ drops to zero for
T ’ 2:6J. In panel (b) we show that this is consistent with
an Ising-type transition, by plotting the expected scaling
for Sð�;�Þ in two dimensions (here, 2�=� ¼ 1=4).

In conclusion, we have shown that polar molecules on a
square lattice will realize exotic solid and supersolid quan-
tum phases under realistic experimental conditions.
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Note added.—While completing the present work, we

became aware of the simultaneous, independent study [18].
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FIG. 5 (color online). Finite-T melting of SS at J=V ¼ 0:1:
(a) �s (empty symbols) and Sð�;�Þ (full symbols) vs �, for L ¼
8, 12, 16 and 20 (diamonds, squares, dots, and triangles, re-
spectively); (b) SðkÞL2�=� vs �, with 2�=� ¼ 1=4.
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FIG. 4 (color online). Vacancy supersolid for J=V ¼ 0:2:
(a) �s (empty symbols) and Sð�;�Þ (full symbols) vs �, for L ¼
8, 12, 16, and 20 (diamonds, squares, dots, and triangles,
respectively); (b) SðkÞL2�=� vs �, with 2�=� ¼ 1:0366. The
crossing indicates an Ising-type second-order transition.
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