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We report an experimental investigation of the local dissipation scale field � in turbulent thermal

convection. Our results reveal two types of universality of �. The first one is that, for the same flow, the

probability density functions (PDFs) of � are insensitive to turbulent intensity and large-scale inhomo-

geneity and anisotropy of the system. The second is that the small-scale dissipation dynamics in

buoyancy-driven turbulence can be described by the same models developed for homogeneous and

isotropic turbulence. However, the exact functional form of the PDF of the local dissipation scale is not

universal with respect to different types of flows, but depends on the integral-scale velocity boundary

condition, which is found to have an exponential, rather than Gaussian, distribution in turbulent Rayleigh-

Bénard convection.

DOI: 10.1103/PhysRevLett.104.124301 PACS numbers: 44.25.+f, 47.27.eb

Fluid turbulence exhibits an intermittent nature ubiqui-
tously, such as intense spikes of velocity gradients and
energy dissipation rates in both space and time. Such
behavior is usually studied quantitatively by investigating
the cascades of turbulent kinetic energy transferred con-
tinuously from large to small scales [1–3]. In the classical
Kolmogorov theory [4], this cascade process would stop at
the smallest length scale of turbulence, known as the
Kolmogorov dissipation scale �K, below which energy is
dissipated into heat. Based on dimensional arguments, �K

can be derived as �K ¼ ð�3=h�iÞ1=4, where � is the kine-
matic viscosity of the fluid. As a mean length obtained
from the mean energy dissipation rate h�i, however, �K

precludes the intermittent nature of turbulence. To estab-
lish a connection between the dissipation scale and the
intensive and localized turbulent events, Paladin and
Vulpiani [5] put forward the idea of a local dissipation
scale; i.e., the local Reynolds number associated with an
eddy of length scale � is of order 1: Re� ¼ �j��vj=�� 1.

Here, ��v ¼ vrðrþ �Þ � vrðrÞ is the longitudinal veloc-

ity increment over a separation�. Such a definition implies
a local balance between the inertial force ð��vÞ2=� and the

viscous force �j��vj=�2 at a particular point in space and

time. The resulting � is therefore a field that fluctuates in
both space and time and hence may be used to reflect
intermittency. Recently, the probability density function
(PDF) of �, Qð�Þ, within the range 0<�< L (L is the
integral length scale of the turbulence) was proposed ana-
lytically by Yakhot [6,7] based on the Mellin transform of
structure functions and by Biferale [8] based on the multi-
fractal formalism. Both analytical predictions consist of
distributions of scales varying from very fine sub-
Kolmogorov scales, related to the very intense velocity
gradients in the form of slender vortex filaments with
diameters of order �K or even less, to those much larger
than �K. Results obtained later from high-resolution nu-

merical simulations of homogeneous and isotropic box
turbulence [9,10] and experiments in turbulent pipe flows
[11] were both found to agree well with the theoretical
distributions. These results seem to suggest a universality
of the smallest-scale fluctuations around �K, but further
tests in different types of turbulent flows are needed.
In this Letter we want to generalize these ideas into

buoyancy-driven turbulence, an important class of turbu-
lent flows that plays an essential role in many natural
processes. The flow at hand is turbulent convection in a
fluid layer heated from below and cooled on the top, i.e.,
turbulent Rayleigh-Bénard convection (RBC), which has
become a paradigm for understanding buoyancy-driven
turbulence [12,13]. Cascades of velocity and temperature
fluctuations in such a system have been studied extensively
in the past two decades [13]. Here, we report measure-
ments of the local dissipation scale distribution at three
representative locations in the convection cell. The con-
vection cell is similar to that used in previous experiments
[14], but has a different size. Briefly it is a vertical cylinder
with top and bottom copper plates and Plexiglas sidewall,
with its heightH and inner diameter both being 50 cm. The
experiment was conducted at fixed Prandtl number Pr ¼
�=� ¼ 5:5 and covered the range 5:9� 109 & Ra &
1:1� 1011 of the Rayleigh number Ra ¼ �g�TH3=��,
with g being the gravitational acceleration, �T the tem-
perature difference across the fluid layer, and � and �
being, respectively, the thermal expansion coefficient and
the thermal diffusivity of the working fluid (water). The
velocity field was measured by the particle image veloc-
imetry (PIV) technique with a measuring area of 3:7�
3:7 cm2 and a spatial resolution �l ¼ 0:59 mm, corre-
sponding to 63� 63 measured velocity vectors. Hollow
glass spheres of 10-�m diameter were used as seed parti-
cles. The PIV measurements were performed at three
different places of the cell: its center, 2 cm from the side-
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wall at midheight, and 2 cm above the center of the bottom
plate. The horizontal velocity component uðx; zÞ and the
vertical one wðx; zÞ were obtained in the laser-illuminated
vertical plane of the large-scale circulation, denoted as the
xz plane. Each measurement lasted 3 hours in which a total
of 25 000 two-dimensional vector maps were acquired with
a sampling rate �2:3 Hz.

The PDF Qð�Þ is determined from the measured veloc-
ity fields in the following way. We first fix a length ‘ that is
an integral multiple of the spatial resolution �l, i.e. ‘ ¼
n�l. The longitudinal velocity increments across the sepa-
ration ‘ in both horizontal and vertical directions, �‘u and
�‘w, are then calculated for each velocity vector measured
at each discrete time t. If either of the obtained values of
‘j�‘uj=� and ‘j�‘wj=� is between 0.9 and 2 [11], it
contributes to the occurrence of local dissipation at a scale
‘ ¼ �. Qð�Þ is then determined as Qð�Þ ¼ qnð�Þ=Nð�Þ,
where Nð�Þ is the total number of calculated velocity
increments over a separation �, nð�Þ is the count of events
among Nð�Þ that satisfy the local balance at scale �, and
q is a normalization parameter determined fromR
Qð�Þd� ¼ 1. In the following, three PDFs are presented.

Qð�xÞ is obtained from the u component only and Qð�zÞ
from the w component only, whereas, Qð�Þ contains con-
tributions from both the horizontal and vertical velocity
components.

Figures 1(a) and 1(b) show log-log plots of Qð�x=�0Þ
(open circles) and Qð�z=�0Þ (solid triangles) measured at
the three locations. Here, the results have been rescaled by
�0 ¼ LRe�0:72

L [10], where ReL is the Reynolds number

based on the integral length scale. One sees that at each
measuring location the distributions obtained in horizontal
and vertical directions coincide excellently with each other
within all measured scales, suggesting that the turbulent
dynamics of the dissipative range in buoyancy-driven tur-
bulence is isotropic. As the flow is driven by buoyancy in
the vertical direction, this result is somewhat unexpected
and surprising, especially for data obtained in the plume-
dominated regions near the sidewall and near the bottom

plate where the turbulent flows are highly anisotropic. The
results shown in Fig. 1 reveal that such buoyancy-induced
anisotropy cannot be differentiated byQð�xÞ andQð�zÞ for
velocity components measured along different directions.
Hereafter, we will discuss only measured Qð�Þ.
Figure 1(c) shows Qð�=�0Þ for all values of Ra. The

figure appears to show that the shape of Qð�Þ is indepen-
dent of Ra. However, as we shall see below, predictions of
theoretical models, i.e., Eqs. (1) and (2), both show a
dependence on ReL (thus Ra). This is because comparing
to the dependence on �, the dependence on ReL is weak
and over the parameter range of our experiment this weak
ReL dependence cannot be manifested clearly in the mea-
suredQð�Þ. With the measuredQð�=�0Þ, one can estimate
a mean dissipation scale from its first moment. Here, we
find that h�i ¼ 7:1�0, 7:7�0, and 8:1�0 for distributions
obtained at cell center, near the sidewall, and near the
bottom plate, respectively. These mean values of � are
close to 10�K, which is located at the lower end of the
inertial range [15,16]. Note that because of the limited
resolution our present results could not properly resolve
the left tail of Qð�=�0Þ when Ra * 5:7� 1010 [Fig. 1(b)].
In Fig. 2, we compare Qð�=�0Þ measured at the three

representative locations: at nearly homogeneous and iso-
tropic cell center (circles) and in the plume-dominated
regions near the sidewall (up triangles) and near the bottom
plate (down triangles). It is seen that the three distributions
are nearly identical with each other. This suggests that
Qð�=�0Þ is insensitive to the large-scale inhomogeneity
of turbulent RBC, further indicating the universality of
Qð�=�0Þ (for the same type of flow). Nevertheless, one
can also see that Qð�=�0Þ measured in the plume-
dominated regions exhibit a less-steep left tail than that
measured at cell center. An increase of the probabilities at
the smallest values of �=�0 indicates the enhanced veloc-
ity gradients at these scales and hence is a manifestation of
the increased level of small-scale intermittency. As the
Reynolds number dependence of Qð�=�0Þ is weak, this
feature could be attributed to the presence of coherent

η/η0

10−1 100 101 102

Q
( η

/η
0)

10−4

10−3

10−2

10−1

100

101

102

η x/η0 , η
 z/η0

10−1 100 101

Q
( η

 x
/ η

0)
, Q

( η
 z
/ η

0)

10−2

10−1

100

101

102

Ra = 5.9x109

η x/η0 , η
 z/η0

100 101 102

10−3

10−2

10−1

100

101

102

Ra = 5.7x1010
(a) (b) (c)

FIG. 1 (color online). (a),(b) PDFs of the local dissipation scales for the horizontal and vertical velocity components, Qð�x=�0Þ
(open circles) and Qð�z=�0Þ (solid triangles), measured at different locations and for different Ra. (c) The measured Qð�=�0Þ for
various values of Ra. For clarity, in (a), (b), and (c) results obtained near the sidewall and near the bottom plate are shifted upwards by
one and two decades, respectively, with respect to those obtained at cell center.

PRL 104, 124301 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 MARCH 2010

124301-2



structures, like plumes, in the near-wall regions. In the
figure, numerical and experimental data from homogene-
ous isotropic box turbulence [10] and from turbulent pipe
flows [11] are also shown. (The two data sets were both
taken from Fig. 4 of Ref. [11] using data capturing soft-
ware.) Good agreements can be seen in the right tails,
whereas, for the left tail at small �, our results exhibit
much higher probabilities. This suggests a much higher
level of small-scale intermittency possessed by our thermal
turbulence in comparison to those of box turbulence and
turbulent pipe flows, although the nominal Reynolds num-
bers for our flow are comparable or even smaller than the
latter two cases. This may be understood by the presence of
thermal plumes, which have a characteristic dimension of
thermal boundary layer that is smaller than �K.

The theoretical Qð�Þ can be derived in several ways.
Using the Mellin transform of structure functions, Yakhot
[6] showed that

Qð�Þ ¼ 2=f��½b logðL=�Þ�1=2g
Z 1

0
dx

� exp

�
�x2 � flog½

ffiffi
2

p
xReL
c ð�LÞaþ1�g2

4b logðL=�Þ
�
; (1)

within the range 0<�< L, where a ¼ 0:383, b ¼
0:0166, and c ¼ Oð1Þ is a fitting parameter [10,11].
Based on the multifractal formalism, Biferale [8] obtained

Qð~�Þ ¼
Z

dhA4�h�DðhÞRe½3hþ3DðhÞ�10�=4
L ~�1�h�DðhÞ

� exp½�0:5A2ð1�hÞReð3h�1Þ=2
L ~��2ð1þhÞ�; (2)

where A ¼ Oð1Þ is a fitting parameter, h is the local scaling
(or Hölder) exponent, DðhÞ is the multifractal dimension

spectrum, and ~� ¼ �=�K with �K ¼ LRe�3=4
L [17]. In

Fig. 2 we compare directly the theoretical Qð�=�0Þ ac-
cording to Eqs. (1) and (2) with our measured results [18].
Here we see that our measured Qð�Þ have much higher
values at small � than both theoretical predictions.
To understand such a discrepancy, we note that both

theoretical approaches [6,8] use the assumption that veloc-
ity increments �Lv across the integral length scale L are
Gaussian distributed, i.e. Pð�LvÞ � expð��Lv

2=2Þ.
Specifically, in Eq. (2), the left tail of Qð�Þ is dominated
by contributions from the stretched exponential in that
equation, which stems from the Gaussian-distributed
integral-length-scale velocity. However, the assumption
of Gaussianity has not been verified in the present system.
To test this, we measured the global velocity field over an
area of 49� 49 cm2 (�‘ ¼ 7:76 mm) in the convection
cell using the PIV method and obtained the integral-scale
velocity increments at the three locations. Figure 3 shows
the PDFs of �Lw at cell center and near the sidewall and
that of �Lu near the bottom plate. One finds surprisingly
that the measured PDFs exhibit decaying exponential tails
at all three locations, rather than Gaussian distribution
(dashed curve in the figure). This is different from all
known experiments and simulations of isotropic turbu-
lence. To offer a plausible explanation, we note that the
turbulent flow in our system is driven by buoyancy in the
vertical direction, which is also believed to be the dominant
force governing the cascade dynamics above the so-called
Bolgiano scale [13]. In the time domain, it has been found
that the Bolgiano time scale in turbulent RBC is of order
1 s [19–21], which is only a factor of 2 or 3 smaller than the
integral time scale. The observed exponential distributions
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FIG. 3 (color online). PDFs of the vertical velocity increments
�Lw at cell center (circles) and near the sidewall (up triangles)
and that of the horizontal velocity increments �Lu near the
bottom plate (down triangles) at Ra ¼ 9:5� 1010 and Pr ¼
5:5. The dashed line is a Gaussian distribution for reference.
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FIG. 2 (color online). Comparison among Qð�=�0Þ measured
at the three representative locations in the cell for all values of
Ra, the experimental result from turbulent pipe flow [11], the
numerical result for box turbulence [10], and the theoretical
distributions according to Eqs. (1)–(4) obtained with ReL ¼
217 (the Reynolds number obtained at cell center for Ra ¼
1:1� 1010).
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of �Lu and �Lw may thus come from the buoyancy-
induced intermittency, which is then transferred from large
to small scales.

Motivated by the distributions revealed by Fig. 3, we
now modify the two models proposed by Yakhot and
Biferale, respectively. Following the same derivations as
in Refs. [6,8], but instead using the exponential distribution
Pð�LvÞ � expð�j�LvjÞ for the integral-length-scale veloc-
ity increments, we obtain, respectively,

Qð�Þ ¼ 1=f�½b� logðL=�Þ�1=2g
Z 1

0
dx

� exp

�
�x� flog½xReLc ð�LÞaþ1�g2

4b logðL=�Þ
�
; (3)

and

Qð~�Þ ¼
Z

dhA4�h�DðhÞRe½3hþ3DðhÞ�10�=4
L ~�1�h�DðhÞ

� exp½�Að1�hÞReð3h�1Þ=4
L ~��ð1þhÞ�: (4)

Figure 2 shows direct comparison ofQð�=�0Þ according to
Eqs. (3) (blue solid line) and (4) (red solid line) and our
measured results. Excellent agreements between the ex-
perimental and theoretical results for nearly all measured�
can be seen, except for Eq. (3) at large �. These excellent
agreements with both predictions suggest that the models
developed for isotropic and homogeneous turbulence can
also be applied to buoyancy-driven turbulence, like turbu-
lent RBC. It is in this sense that our results reveal that the
local dissipation scale dynamics is universal, whereas the
exact functional form of the local dissipation scale PDF
(specifically, its left part) depends on the integral-scale
velocity boundary condition.

It is a pleasure to acknowledge helpful discussions
with L. Biferale and J. Schumacher. We also thank
J. Schumacher for his help in the derivation of Eq. (3).
This work was supported by the Research Grants Council
of Hong Kong SAR (No. CUHK403806 and
No. CUHK403807). Q. Z. thanks the support of
Innovation Foundation of Shanghai University, Shanghai
NSF (No. 09ZR1411200), Chenguang Project
(No. 09CG41), and RFDP of Ministry of Education of
China (No. 20093108120007).

[1] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov
(Cambridge Univ. Press, Cambridge, 1995).

[2] K. R. Sreenivasan and R.A. Antonia, Annu. Rev. Fluid
Mech. 29, 435 (1997).

[3] T. Ishihara, T. Gotoh, and Y. Kaneda, Annu. Rev. Fluid
Mech. 41, 165 (2009).

[4] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301
(1941).

[5] G. Paladin and A. Vulpiani, Phys. Rev. A 35, 1971 (1987).
[6] V. Yakhot, Physica (Amsterdam) 215, 166D (2006).
[7] V. Yakhot, J. Fluid Mech. 606, 325 (2008).
[8] L. Biferale, Phys. Fluids 20, 031703 (2008).
[9] J. Schumacher, K. R. Sreenivasan, and V. Yakhot, New J.

Phys. 9, 89 (2007).
[10] J. Schumacher, Europhys. Lett. 80, 54 001 (2007).
[11] S. C. C. Bailey, M. Hultmark, J. Schumacher, V. Yakhot,

and A. J. Smits, Phys. Rev. Lett. 103, 014502 (2009).
[12] G. Ahlers, S. Grossmann, and D. Lohse, Rev. Mod. Phys.

81, 503 (2009).
[13] D. Lohse and K.-Q. Xia, Annu. Rev. Fluid Mech. 42, 335

(2010).
[14] C. Sun, L.-Y. Ren, H. Song, and K.-Q. Xia, J. Fluid Mech.

542, 165 (2005).
[15] C. Sun, Q. Zhou, and K.-Q. Xia, Phys. Rev. Lett. 97,

144504 (2006).
[16] Q. Zhou, C. Sun, and K.-Q. Xia, J. Fluid Mech. 598, 361

(2008).
[17] In the evaluations of Eqs. (2) and (4), the log-Poisson

spectrum [Z.-S. She and E. Leveque, Phys. Rev. Lett. 72,
336 (1994)], DðhÞ ¼ 3ðh� 1

9Þ= logð23Þ½logf3ð19 � hÞ=
2 logð23Þg � 1� þ 1, was chosen and the integral was evalu-
ated over the range hmin < h � hmax, where hmin ¼ 1

9 and
hmax ¼ 0:38 is obtained such that DðhÞ reaches its maxi-
mum value of 3 at h ¼ hmax.

[18] Note that the parameters A and c essentially control the
peak position of the theoretically-predicted Qð�Þ, in the
two models, respectively. Here, we choose A ¼ 4 and c ¼
2 to fit our experimental results. If different values of A
and c were chosen, the predictions of the two models
would fit the data of turbulent pipe flow and box turbu-
lence much better than they appear in Fig. 2 (see, e.g.,
[8,10,11]). These fittings are not shown here to avoid
overcrowding the figure and also because the purpose
here is to compare the theoretical predictions with our
measured data.

[19] S.-Q. Zhou and K.-Q. Xia, Phys. Rev. Lett. 87, 064501
(2001).

[20] E. S. C. Ching, K.W. Chui, X.-D. Shang, X.-L. Qiu, P.
Tong, and K.-Q. Xia, J. Turbul. 5, 27 (2004).

[21] Q. Zhou and K.-Q. Xia, Phys. Rev. E 77, 056312 (2008).

PRL 104, 124301 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 MARCH 2010

124301-4


