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Quantum mechanics imposes that any amplifier that works independently on the phase of the input

signal has to introduce some excess noise. The impossibility of such a noiseless amplifier is rooted in the

unitarity and linearity of quantum evolution. A possible way to circumvent this limitation is to interrupt

such evolution via a measurement, providing a random outcome able to herald a successful—and

noiseless—amplification event. Here we show a successful realization of such an approach; we perform

a full characterization of an amplified coherent state using quantum homodyne tomography, and observe a

strong heralded amplification, with about a 6 dB gain and a noise level significantly smaller than the

minimal allowed for any ordinary phase-independent device.
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Quantum optical detection techniques are so advanced
that quantum fluctuations are the main source of noise.
Therefore, when amplifying optical signals, one has to
look at the intrinsic limitations of the process: any ampli-
fier cannot work independently on the phase of the input
unless some additional noise is added [1]. The origin of this
limitation is that adding extra noise is needed for the output
field to obey Heisenberg’s uncertainty relation. Also, it is
connected to the impossibility of realizing arbitrarily faith-
ful copies of a quantum signal [2,3], and it is thus deeply
rooted in the linear and unitary evolution of quantum
mechanical systems.

Various aspects of this limitation have been studied by
using optical parametric amplifiers [4–7]. For instance, a
nondegenerate optical parametric amplifier amplifies all
input phases, and introduces the minimal level of added
noise, which degrades the signal-to-noise ratio [1]. The
same process, driven in the degenerate regime, may pro-
vide amplification preserving the signal-to-noise ratio.
However, this occurs in a phase-dependent fashion: only
the part of the signal in phase with the pump light will be
amplified, while the part which is 90� out of phase with the
pump will be deamplified [4,5].

Amore intriguing idea is to find a way to tamper with the
linear evolution of quantum mechanics; this is actually
possible, though nondeterministically, by conditioning
our observation upon the result of a measurement [8].
Noiseless amplification can then take place, but only a
fraction of the times, and the correct operation is heralded
[9,10]. This strategy is commonly adopted for building
effective nonlinearities in linear quantum optical gates
[11–13].

Here we follow the proposal of Ralph and Lund [9] to
demonstrate experimentally that heralded nondeterministic
amplification can realize processes which would be impos-
sible for usual amplifiers. Unlike another realization [14],
we have direct access to the output state via state tomog-

raphy, so we can provide a complete description of the
process, and analyze the limitations arising from nonideal
components. Our study is relevant in the long-term view of
the integration of amplifiers in quantum communication
lines [15].
The conceptual layout of the noiseless amplifier is pre-

sented in Fig. 1. The operating principle is closely related
to quantum teleportation [16–19], and is actually a varia-
tion of the quantum scissors protocol [20,21]: the phase
and amplitude information of the input are transferred via a
generalized teleportation onto a superposition of the vac-
uum and a single photon. If the input is not too large, such
superposition is still adequate to describe a coherent state
with a good fidelity. The amplification is allowed by the
use of a nonmaximally entangled resource [9].
More in detail, a coherent state j�i is fed into the input

mode of the amplifier; at the same time an auxiliary single-

FIG. 1 (color online). Conceptual layout of the noiseless am-
plifier. A single photon is split on an asymmetric beam splitter
(A-BS). The input state j�i is superposed with reflected output
of the A-BS on asymmetric beam splitter (S-BS). A successful
run of the amplifier is flagged by a single-photon event on
detector D1 and no photons on detector D2. The transmitted
mode constitutes the output mode of the amplifier, and is
approximately in an amplified state jg�i, conditioned on the
right detection events, as described by Eq. (1).
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photon beam is provided, and split onto an asymmetric
beam splitter (A-BS) with reflectivity r; this prepares the

two-mode entangled state
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

j1iTj0iR þ rj0iTj1iR,
where T, R denote the output modes of the A-BS. We
perform a collective measurement on the input state and
part of the entangled state, in our case the R mode; this
consists in superposing them on a symmetric beam splitter
(S-BS), and performing photon counting at the outputs. A
successful event is flagged by a single-photon detection by
the detector D1, and no photons detected by the detector
D2; conditioned on this event, the (non normalized) state of
the T mode, which represents the output of our amplifier, is
[9]

e�ðk�2kÞ=2 r
ffiffiffi

2
p

�

j0i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

r
�j1i

�

: (1)

The output is thus prepared approximately in the coher-

ent state jg�i, with g ¼
ffiffiffiffiffiffiffiffi

1�r2
p

r ; the probability of this event

is given by the squared norm of the state (1): P ¼
e�k�2k r2

2 ð1þ g2k�2kÞ. Events where D2 detects one pho-

ton and D1 detects none can still be accepted by using an
active phase modulation [9]. Such conditioning is respon-
sible for the dependence of the output beam on the input. In
fact, if we observe the output unconditionally, we would
find a mixture of the vacuum and the one-photon states
carrying no information about j�i.

The main limitation of the amplifier is the size of input
state: for its correct operation it is necessary that
g2k�2k � 1. Larger coherent states can be amplified by
splitting the input into several modes, each one with an
acceptable size for the amplifier. These modes are then

amplified individually, and finally recombined nondeter-
ministically on a single mode [9]. Here we will focus on
small values of k�2k, which are relevant for continuous-
variable quantum cryptography [22].
Single photons are produced by using spontaneous para-

metric down-conversion in a nonlinear crystal. This pro-
cess generates photon pairs in two correlated modes; the
presence of a single photon on one mode is inferred by a
click on a single-photon detector D0 placed on the other
twin mode [23]. Our down-conversion source is based on a
100 �m thick KNbO3 slab, pumped by doubled Ti:sap-
phire laser pulses (Pmax ¼ 3:3 mW, �p ¼ 423:5 nm,�t ¼
220 fs, repetition frequency �� ¼ 800 kHz). Phase
matching is temperature-tuned to obtain frequency degen-
erate emission at an angle�3�. The amplifier works condi-
tionally on a coincidence count between D0 and D1.
Because of the limited efficiency of our single-photon
detection, D2 can be dropped from the actual implementa-
tion without significantly affecting the performance of the
amplifier.
We used homodyne detection and a maximum-

likelihood reconstruction algorithm [24] to determine the
Wigner quasiprobability distribution of the output of our
amplifier for several values of k�2k. A nominal value g ¼
2 corresponding to a 6 dB gain in intensity was set by
adjusting the A-BS. Each state tomography is recon-
structed from a set of 200 000 points divided into 12 histo-
grams according to the measured quadrature. The
measured success rates depend on the amplitude, and
ranges from �1% for k�k ’ 0:1 up to �6% for k�k ’ 1.
The Wigner functions shown in Fig. 2 summarize the
behavior of the amplifier for growing input amplitudes:
even for small amplitudes, k�k ¼ 0:1, one can observe

FIG. 2 (color online). Experimental results for the Wigner functions illustrating the evolution of the output state. For each value of
k�k we show a 3D and a contour plot of the Wigner function. These results are obtained directly from raw homodyne data, without
corrections for the detection efficiency. The value of � is arbitrarily chosen to be real and positive, but the results would be the same for
any other choice, since the amplifier gain is phase independent.
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small departures from the circular shape of a coherent
state, in particular, different widths along the amplitude
quadrature X and the phase quadrature P. As the amplitude
grows, k�k ¼ 0:25, and k�k ¼ 0:5, those departures be-
come more important. These nontrivial structures are in-
trinsic to the amplifier: they arise from the fact that the
output state (1) is non-Gaussian (a superposition of vac-
uum and one-photon states). As such, it provides an ap-
proximation to a coherent state becoming less satisfactory
as k�k grows. It is important then to identify a region in
which the gain remains roughly constant, and departures
from a round shape are negligible. This sets the maximal
value of k�k that can be amplified in a single stage.

We quantify the effective amplification by introducing
an effective gain:

geff ¼ hXouti
hXini ; (2)

where Xout, (Xin) is the amplitude quadrature of the output
(input) field.

We have used two different methods for characterizing
the input and output states: the output is analyzed with the
homodyne detection, while the input is measured using a
photon counting avalanche photodiode. This allows us to
characterize both beams while the amplification scheme is
running. On the input side, the amplitude k�k is measured
with the detector D1, relating the observed count rate C
when blocking the single-photon beam; calling � the
detection efficiency, the value of k�k is calculated from

the relation [25] C ¼ ��ð1� e��k�2kÞ. From this mea-
surement, we can obtain the value hXini ¼ 2�, for � real.
This evaluation has been checked to be fully consistent
with the homodyne result, directly performed on the input
beam when calibrating the system.

We consider the values hXouti and hXini just before and
just after the amplifier. The ratio of these two quantities
would be unchanged if we use the values measured with
the same homodyne efficiency �HD, since hXmi ¼
ffiffiffiffiffiffiffiffiffi

�HD
p hXi. The homodyne efficiency is estimated as �HD ¼
0:68, and originates from imperfect mode-matching (0.9),
limited optical transmittivity (0.87), and limited quantum
yield of the photodiodes (0.97). Experimental data are
compared with a model taking into account the main
imperfections of our setup: limited quality of our single-
photon state, due to multi-pair emission and parasite pro-
cesses [23,26]; imperfect mode-matching between the
single photon and the coherent beams; finite photon count-
ing detection efficiency. Our entangled resource is still
satisfactory for small coherent states (k�k< 0:1Þ, for
which the observed gain remains close to the target value
g ¼ 2 [Fig. 3(a)].

The noiseless behavior of our amplifier is analyzed in
terms of its ‘‘equivalent input noise’’ (EIN), also called
‘‘noise referred to the input’’ [27–30]:

Neq ¼ h�X2
outi

g2eff
� h�X2

ini; (3)

where h�X2i is the variance of the X quadrature just at the
output of the amplifier, and is related to the measured value

h�X2
mi by the relation h�X2i ¼ 1þ h�X2

mi�1
�HD

. This figure is

the quantum optical analogue to the one adopted in elec-
tronics [28,29]; it tells how much noise must be added to
the input noise level, in order to mimic the observed output
noise for the given gain. In Fig. 3(b), Neq is shown as a

function of the input amplitude; we report both the mini-

FIG. 3 (color online). Experimental test of the noiseless opti-
cal amplifier. (a) effective phase-independent gain as a function
of the input state amplitude. The solid line is the prediction from
a model accounting for the main imperfection of our setup. The
relevant values of k�k are smaller than 0.1. (b) since the noise of
the amplified state is not fully circular in phase space (see
Fig. 2), homodyne detections with different phases will see
different noises. Therefore, we plot the average EIN (j), maxi-
mal EIN (m), and minimal EIN (d) as a function of the input
state amplitude k�k. Our model predicts the solid line for the
average EIN, and dashed lines for the minimal and maximal EIN
in the output state. We also report as a reference (dotted line) the
minimal noise attained with a nondegenerate parametric ampli-
fier [1] for geff > 1 and with a beam splitter model [25] for
geff < 1. For small k�k, Neq is clearly negative.
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mal and the maximal EIN, corresponding to the X and P
quadratures, respectively (Fig. 2), and the EIN averaged
over the 12 quadratures corresponding to our histograms.
We also report the predicted Neq obtained with a phase-

independent parametric amplifier driven at gain geff . Our
data demonstrate how the noiseless amplification actually
occurs for all quadratures at the same time; the amplified
state remains approximately round when k�k< 0:1.
Outside this region, our amplifier quickly reaches its
saturation regime, where the operation is severely
compromised.

Some excess noise is present mostly due to multiphoton
events on the auxiliary mode. This noise can be reduced
only at expenses of the single-photon generation rate. The
reported value represents the best experimental trade-off
between count rate and excess noise we have achieved on
our setup.

The EIN parameter is always positive in ordinary am-
plifiers, as these cannot improve the quality of the entering
signal. In the present case, it may become negative for
specific heralded events; obviously, when considering the
whole set of events, we always observe a behavior com-
patible with quantum mechanics. Indeed, we can give a
simple argument to show that the amplifier cannot increase
the overall information if used at the receiving site of a
transmission line. Let us consider the mutual information
IAB between two parties sharing a Gaussian distribution of
coherent states [30]: IAB ¼ 1

2 lnð1þRÞ, whereR denotes

the signal-to-noise ratio. The amplifier modifies the ex-
pression above as: I

amp
AB � P lnð1þ g2RÞ, where 2P is the

success probability when allowing for both heralding
events. In the limit of small coherent states one gets

I
amp
AB � r2

2
g2R ¼ 1� r2

2
R ’ ð1� r2ÞIAB:

This shows that the success probability of amplification is
small enough not to increase the overall mutual informa-
tion, remaining thus consistent with the general limits
imposed by quantum mechanics.

Our investigation demonstrates that some processes that
are forbidden with unitary operations can be actually ob-
served in experiments based on quantum measurement and
post-selection. Furthermore, we have shown that our am-
plifier is quite robust against many experimental imperfec-
tions, making it a valuable resource for quantum
communication and opening the way to its applications
to more complex state. In particular, our device can be
adopted for the amplification of a beam from a two-mode
squeezed vacuum to achieve nondeterministic entangle-
ment distillation [9].
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