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Determination of the Chiral Condensate from (2 + 1)-Flavor Lattice QCD
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We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2 + 1 flavors
of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a
163 X 48 lattice at a lattice spacing ~0.11 fm. At the lightest sea quark mass, the finite volume system on
the lattice is in the € regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with
the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral
condensate in (2 + 1)-flavor QCD with strange quark mass fixed at its physical value as SM5(2 GeV) =
[242(04)@:3) MeV ] where the errors are statistical and systematic, respectively.
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Spontaneous breaking of chiral symmetry is one of the
most fundamental properties of quantum chromodynamics
(QCD), as it produces the bulk of the hadron masses. The
symmetry breaking is indicated by a nonzero value of the
chiral condensate X, which is an expectation value of the
scalar density operator gg. Despite its importance, calcu-
lation of 3 remains a significant challenge, even using the
numerical simulation of QCD on the lattice, due to both
ultraviolet and infrared problems.

On the ultraviolet side, an additive renormalization of
the scalar operator diverges as ~1/a? as the lattice spacing
a decreases, when the chiral symmetry is violated. Even
with exact chiral symmetry, there exists a quadratic diver-
gence proportional to the quark mass. On the infrared side,
since spontaneous symmetry breaking does not occur at
finite volume, the infinite volume limit has to be taken
before going to the massless limit. Therefore, careful study
of the scaling in the chiral and infinite volume limits is
crucial to determine 3.

Our previous work [1,2] opened a new possibility to
overcome these difficulties by performing a lattice QCD
employing the overlap fermion formulation [3,4], which
preserves exact chiral symmetry at finite lattice spacings.
The ultraviolet problem is avoided by using the spectrum
of low-lying fermion modes. According to the Banks-
Casher relation [5], the spectral density p(A) of the Dirac
operator at A = 0 is related to the chiral condensate as 3, =
7p(0). At a large but finite volume V, chiral perturbation
theory (ChPT) can be used to predict the volume scaling of
the near-zero modes, which is also equivalently described
by the chiral random matrix theory [6-9]. By matching the
theoretical prediction with the lattice data, the chiral con-
densate X was determined at the leading order (LO) in the
€ expansion (see also [10]).

This Letter extends the previous work in several direc-
tions. (i) Based on a new ChPT calculation by Damgaard
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and Fukaya [11], which is valid in the conventional
p regime as well as in the € regime, we use the lattice
data at several values of sea quark masses. (ii) The new
formula consistently treats the next-to-leading order
(NLO) effects in the p expansion and thus, the result of
3, has the NLO accuracy (A similar NLO analysis of the
lattice data taken with the Wilson fermion in the p regime
has been done recently [12].). (iii) The lattice data are
newly generated including the effect of strange quark, so
that the result corresponds QCD in nature. (iv) The finite
volume scaling is confirmed using two volumes 16> X 48
and 243 X 48. With these new developments, the determi-
nation of % is made more precise and reliable.

The spectral density at a given topological charge Q is
calculated within ChPT at NLO as [11]

pQ()\) = 2eff/,)EQ()tEeffV; {mseazeffv}) + pp()‘: {msea}): (1)

for an eigenvalue A of the Dirac operator. Assuming the
analyticity, po(A) is obtained through the real part of the
chiral condensate with a valence quark mass equal to an
imaginary value iA. Here 3. is an ‘“‘effective” chiral
condensate of which definition is given below.

The spectrum of the near-zero quark modes (A ~ 1/2V)
is mainly affected by the zero-momentum pion modes. In
fact, the first term in (1) is the same as the spectral density
at the leading order of the € expansion [6-9] expressed as a
function of dimensionless combinations AX.;V and
{MgeaZere VY = {m ZegeV, - - -, my, 3.4V} expressed by

e detB
A+ p de A

P o5& {reat) = C 2
with Ny X N; matrix A and (Ny + 2)(Ny + 2) matrix
B defined by A = ,LL{_IIQH_](,LL,») and B); =
fj_zfgﬂ';z(f), By = gsj1(0), B =
(=i Mgyji(pi—a) (i # 1, 2), respectively (J;’s
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and I;’s denote the (modified) Bessel functions.). The
phase factor C, is 1 for Ny = 2 or 3.

The second term in (1) is the NLO correction seen in the
ordinary p-expansion [13]. With the meson mass Mizj =
(m; + m;)%/F?, which is made of either sea quark (f) or
valence quark (v), it is expressed as

pP(A {mye}) = — %Re[% (5<M2v) - A(MT?’C))

= (GO2,) = GO [l 3
The function A(M2?) contains the chiral logarithm,

AM?) = 12”;2 ln;L”T2 + g,(M?), with g,(M?) representing
sub

the finite volume effect [14]. The subtraction scale g,
is set at 770 MeV in this work. The other function G(M?)
has a double-pole contribution due to the partial quench-
ing. The explicit forms of g;(M?) and G(M?) are given in
[11] [In this Letter, we use a simplified notation. G(M?)
corresponds to G(0, M?, M?) in [11]]. The effective chiral
condensate 3. in (1) is given by

Sefr = 2[1 - —(% A(MT%f) —G(0) - 16L2§M}f)i|,

1
F2
“)
where L{ (renormalized at ug,;,) is one of the low-energy
constants at NLO [15].

Numerical simulations of lattice QCD are performed
using the Iwasaki gauge action at 8 = 2.3 including 2 +
1 flavors of dynamical overlap quarks on a 163 X 48 lat-
tice. The lattice spacing a = 0.1075(7) fm is determined
from the heavy quark potential with an input ry = 0.49 fm.
For the strange quark mass, we choose two different values
m, = 0.080 and 0.100 in the lattice unit. For the former, six
values of up and down quark masses m,q = 0.002, 0.015,
0.025, 0.035, 0.050, and 0.080 are taken. For the latter, five
values myq = 0.015, 0.025, 0.035, 0.050, and 0.100 are

used. The smallest value m,q = 0.002 roughly corresponds
to 3 MeV in the physical unit, with which pions are in the
€ regime. In order to investigate the finite volume scaling,
we also simulate on a 24% X 48 lattice with one choice of
the sea quark masses m,q = 0.025 and m; = 0.080.

In the hybrid Monte Carlo (HMC) updates, the global
topological charge Q of the gauge field is fixed to its initial
value by introducing extra (unphysical) Wilson fermions,
which have a mass of cutoff order [16]. In our main runs,
we set O = 0. We also simulate another sector of topo-
logical charge Q = 1 at myy = 0.015 and m; = 0.080.

We accumulate 2500 HMC trajectories for the main runs
in the p regime, 4750 (but the trajectory length is 0.5) for
the € regime lattice, 1800 for the Q = 1 run, and 1900 on
the 243 X 48 lattice. Eighty pairs of low-lying eigenvalues
of the massless overlap operator D are computed at every 5
(or 10 in the Q = 1 and L = 24 runs) trajectories. For the
comparison with ChPT, every complex eigenvalue A°Y is
projected onto the imaginary axis as A = ImA® /(1 —
ReA°Y/(2mg)). Here mg(= 1.6) is a parameter to define
the overlap-Dirac operator. In the analysis, we consider
positive A only. The integrated autocorrelation time of the
lowest A is measured as 624 trajectories depending on the
simulation parameters. The statistical error is estimated by
the jackknife method after binning data in every 100
trajectories. Details of the numerical simulation will be
reported elsewhere.

At each set of sea quark masses, the formula (1) is
described by two unknown quantities 2. and F. Note
that 3 in (3) can be replaced by X neglecting higher
order effects. We first determine these parameters from the
lattice data of py(A). Roughly speaking, the height of
po(A) near A =0 determines X according to the
Banks-Casher relation, while the shape in the bulk region
is controlled by F, as far as A is in the region of conver-
gence of the chiral expansion.

Figure 1 shows the spectral density p,(A) multiplied by
7 (left panel) and the mode number below A, Ny(A) =
V [3dNpo(X') (right), calculated at m,y = 0.015 and
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FIG. 1 (color online).

Spectral density mpy(A) (left) and mode number Ny (A) (right) of the Dirac operator at myq = 0.015, m; =

0.080 and Q = 0. The lattice result [given by histogram (left) or solid symbols (right)] is compared with the ChPT formula (1) drawn
by solid curves. For comparison, the prediction at the leading order of e-expansion (dashed curves) is also shown.
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FIG. 2 (color online). Same as the left panel of Fig. 1, but
calculated on the € regime lattice, at m,q = 0.002 and m, =
0.080.

my; = 0.080. The solid curve represents the ChPT
result (1) with 2. and F determined from Ny(A) at two
reference points A = 0.004 (~7 MeV) and 0.017
(~30 MeV). We observe that the formula (1) describes
the lattice data well in the region below A ~ 0.03
(~my/2) The result is stable within statistical error under
changes of the reference points in the range A < 0.03.
Beyond this value, higher order effects may become larger
as suggested in the analysis of the pion mass and decay
constant [17]. In the same figure, we also draw the first
term of (1). Its discrepancy from the lattice data for A =
0.01 indicates that the second term p”(A, {mg.,}) in (1) is
important for the consistency between QCD and ChPT.

Results from the € regime run are shown in Fig. 2. 34
and F are determined from reference points A = 0.01 and
0.02. We observe a good agreement between the data and
NLO ChPT. The NLO correction is less significant than
that in the p regime, but still visible above A ~ 0.02.

The values of 2. and F are summarized in Table 1 for
all parameter choices. We use the ChPT formulas of both
Ny =2 and 2 + 1 cases. The Ny =2 ChPT formula is
understood as the leading contribution in an expansion in

TABLE I. Numerical results for 2 and F. The upper half is
the data at m, = 0.080 while the lower is at 0.100.

Ny=2+1 formula Ny=2 formula

Myq ey F Sty F

0.002  0.00204(8) 0.0465(100) 0.00204(6) 0.0423(49)
0.015 0.00314(18) 0.0536(15) 0.00305(17)  0.0551(16)
0025 000333(18) 0.0624(20)  0.00326(18) 0.0647(20)
0035 000404(39) 0.0636(17)  0.00393(36) 0.0666(16)
0.050 0.00423(22) 0.0696(16) 0.00413(21) 0.0738(16)
0.080 0.00375(13) 0.0744(15) 0.00367(12)  0.0799(15)
0.015 0.00309(14) 0.0564(19) 0.00303(13) 0.0578(19)
0.025 0.00349(20) 0.0622(17) 0.00342(19)  0.0642(17)
0.035 0.00418(40) 0.0647(14) 0.00409(38) 0.0673(14)
0050 000383(13) 0.0713(16)  0.00376(13) 0.0747(16)
0.100 0.00370(13) 0.0770(15) 0.00363(12) 0.0825(15)

terms of the large strange quark mass. 2 and F in this
framework depend on the strange quark mass. The curves
in Figs. 1 and 2 are drawn using the Ny = 2 + 1 formula,
but the difference from N, = 2 is hardly visible in the
range A < 0.03. The numerical results of 3. and F are,
in fact, insensitive to the choice of N f; in the formula,
except for F in the heavy mass region. We also note that
there is no significant difference of 3.4 between m =
0.080 and 0.100, which confirms decoupling of the strange
quark from the low-energy dynamics.

From the data in the nontrivial topological sector Q = 1,
we observe that the topological charge Q largely affects the
spectral density near A =0, but the values of X 4 =
0.00354(48) and F = 0.0521(25) are consistent with those
at O = 0. The data at L = 24 also show the expected
scaling behavior from (1). Since the definition of 2.z (4)
explicitly contains the lattice volume, the results from
different volumes cannot be compared directly. After con-
verting the L = 24 lattice result 2. = 0.003 06(7) to that
of L = 16, we obtain 0.00341(18), which is consistent
with 0.003 33(18) obtained on the L = 16 lattice.

Next, we analyze the sea quark mass dependence of 2.¢
from which 2, F and Lg can be determined. To see the
convergence of the chiral expansion, we carry out fits using
four, five and six lightest data points as a function of m
with m fixed at 0.080. The data points and fit curves of the
Ny = 2 + 1 formula are shown in Fig. 3. The curvature due
to the chiral logarithm in (4) is manifest.The fit result for
3PS which is S in the limit of V = oo and myq = 0
while keeping m; fixed at 0.08, is stable under change of
the fitting range. Since we observe no sizable m, depen-
dence (see Table I), 2P"s can be considered as the one at
the physical strange quark mass. From the five points fit,
we obtain 2Ph¥s = 0.001 86(10), F = 0.0406(5), and L}, =
—0.000 11(25) in the lattice unit, with y?/dof = 0.7.

Since F appears starting at the NLO correction in the
formula, m,q dependence of the data given in Table I
reflects the NNLO effects, which is beyond the scope of
this work. A naive linear extrapolation to the chiral limit
yields F = 0.0410(46), which roughly agrees with the
value from the fit of 2.

Our final result for the chiral condensate SPYS, in the
limit of m,q = 0 and m fixed at its physical value, is

SMS(2 Gev) = [242(04)( f}g) MeV:IS, 5)

where the errors are statistical and systematic, respectively.
The lattice scale a = 0.1075(7) fm is determined from
the heavy quark potential ry = 0.49 fm. We use the
nonperturbatively  calculated renormalization factor
1/Z4(2 GeV) = 0.806(12)(*37) [18] to convert the result
to the MS scheme at 2 GeV.

Possible systematic errors are listed in Table II. The
error from chiral fit is estimated by taking variations of
the fitting range and the choice of Ny in the ChPT formula.
Finite volume effect is estimated by taking the difference
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FIG. 3 (color online).
2 + 1 ChPT.

Three parameter fit of 2. to the N, =

between the data on 16> X 48 and 243 X 48 lattices. The
discretization effect is hard to estimate within the calcu-
lation done at a single lattice spacing, but partly reflected in
the mismatch of the lattice spacing obtained from different
inputs: 0.100(5) fm from the pion decay constant [19] and
0.109(2) fm from the €} baryon mass [20]. To be conser-
vative, the maximum deviation from the central value
(~7.4%) is added in both positive and negative directions
in Table II.

The chiral condensate obtained in this work (5) is con-
sistent with other determinations from the pseudoscalar
meson mass, >™M5(2 GeV) = [257(14) MeV]® [19] and
from the topological susceptibility, 2MS(2 GeV) =
[249(4) MeV] [21,22]. The former is obtained with the
NNLO ChPT formula, while the latter only uses the LO
relation (and the errors do not contain the systematic
effects). Our result is also consistent with two-flavor results
in the previous works [1,2,12,17,23,24]. Namely, there is
no significant effect of the strange sea quark.

We also obtain F = 74(1)(8) MeV and L;(770 MeV) =
—0.000 11(25)(11). Their systematic errors are estimated
in a similar manner.

By the use of the eigenvalue density of the Dirac opera-
tor calculated on the lattice, the chiral condensate is de-
termined without suffering from large subtraction of
ultraviolet divergences. The dependence on the volume,
topological charge and quark masses is well described by
ChPT at NLO in the region where both A and m, are
smaller than m,/2.

TABLE II.  Systematic errors for [2PY$(2 GeV)]'/3. The total
error is obtained by adding each estimate by quadrature.

renormalization 1%
chiral fit 229
finite volume i(l)ié %
finite a *+7.4%
total +19 ¢

—75
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