
Thermodynamic First Order Transition and Inverse Freezing in a 3D Spin Glass

M. Paoluzzi,1,2 L. Leuzzi,1,3 and A. Crisanti3

1IPCF-CNR, UOS Roma, Piazzale Aldo Moro 2, I-00185 Roma, Italy
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We present a numerical study of the random Blume-Capel model in three dimensions. The phase

diagram is characterized by spin-glass–paramagnet phase transitions of both first and second order in the

thermodynamic sense. Numerical simulations are performed using the exchange Monte Carlo algorithm,

providing clear evidence for inverse freezing. The main features at criticality and in the phase coexistence

region are investigated. We are not privy to other 3D short-range systems with quenched disorder

undergoing inverse freezing.
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Introduction.—We aim to investigate the phenomenon of
reversible inverse transition (IT), occurring between a solid
and a liquid in inverse order relation relative to standard
transitions. The case of ‘‘ordering in disorder,’’ occurring
in a crystal solid that liquefies on cooling, is generally
termed inverse melting. If the solid is amorphous, the IT
is termed inverse freezing (IF). ITs are observed in differ-
ent materials. The first examples were the low temperature
liquid and crystal phases of helium isotopes He3 and He4

[1]. A more recent and complex material is a methyl-
cellulose solution in water, undergoing a reversible inverse
sol-gel transition [2]. Other examples are found in poly(4-
methylpentene-1) (P4MP1) at high pressure [3], in solu-
tions of �-cyclodextrine (�CD) and 4-methypyridine
(4MP) in water [4], in ferromagnetic systems of gold nano-
particles [5], and for the magnetic flux lines in a high
temperature superconductor [6]. In mentioning these cases,
we stick to a definition of IT as the one hypothesized by
Tammann [7] a century ago: a reversible transition in
temperature at fixed pressure [8] whose low T phase is
an isotropic fluid [or paramagnet (PM) for magnetic sys-
tems]. IT is not an exact synonym of reentrance. Indeed,
a reentrance can be absent, as for �CD [4] or methyl-
cellulose [2] solutions, where no high temperature fluid
phase is detected. Moreover, not all reentrances are
signatures of an IT, as for those phases with different kinds
of symmetry separated by reentrant isobaric transition
lines in temperature, cf., e.g., Ref. [9], in which, however,
no melting to a completely disordered isotropic phase is
present.

A thorough explanation of the fundamental mechanisms
leading to the IT would require a microscopic analysis of
the single component’s behavior and their mutual interac-
tions as temperature changes across the critical point.
Because of the complexity of the structure of polymers
and macromolecules acting in such transformations, a
clear-cut picture of the state of single components is sel-
dom available. For the case of methyl-cellulose [2], where
methyl groups (MGs) are distributed randomly and hetero-

geneously along the polymer chain [10], Haque and Morris
[11] proposed that chains exist in solution as folded hydro-
philic bundles in which hydrophobic MGs are packed. As
T is raised, bundles unfold, exposing MGs to water mole-
cules and causing a large increase in volume and the
formation of hydrophobic links eventually leading to a
gel condensation. The polymers in the folded state are
poorly interacting but also yield a smaller entropic contri-
bution than the unfolded ones. A similar behavior has been
recently modeled in colloidal systems [12].
Under the assumption that this is one of the mechanisms

underlying IT, we model it approximating the folded or
unfolded conformation by bosonic spins: s ¼ 0 represent-
ing inactive state, s � 0 interacting ones; cf. Refs. [13,14].
To represent the randomness on the position of the ‘‘inter-
action carrying’’ elements (e.g., MGs) we will introduce
quenched disorder. Theoretical modeling for ITs mainly
consists of heuristic reproductions of the phenomenon
[13,15]. In particular, IF has been recently observed in
spin-glass (SG) mean-field Blume-Emery-Griffiths-Capel
(BEGC) models [16,17]. We will focus on the random
Blume-Capel (BC) model [18], whose mean-field solution
[19] predicts a phase diagram with both a SG-PM second
order and a first order phase transition (FOPT), i.e., dis-
playing latent heat and phase coexistence [20]. The latter is
characterized by the phenomenon of IT [16,21]. This is in
contrast with the behavior of the original ordered BC
models, in which no IT was observed [22–24], and with
the behavior of a 3D BC model with quenched disorder on
a hierarchical lattice [25], yielding no IF or first order
SG-PM transition. Eventually, to the best of our knowl-
edge, the only claim of the existence of a FOPT in D ¼ 3
systems in the presence of quenched disorder has been
made for the 4-Potts glass [26]. In that case, though,
randomness tends to strongly smooth the transition into a
second order one.
Motivated by the above considerations we have, thus,

numerically studied the existence of IF in a 3D random BC
model with nearest-neighbor (NN) interactions.
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Model.—We consider the following Hamiltonian

H J½s� ¼ �X

ðijÞ
Jijsisj þD

X

i

s2i ; (1)

where (ij) indicate ordered couples of NN sites and si ¼
�1; 0;þ1 are spin-1 variables lying on a cubic lattice of
size N ¼ L3 with periodic boundary condition. Crystal
field D is a chemical potential for the magnetically active
sites. Random couplings Jij are independent identically

distributed as PðJijÞ ¼ 1=2�ðJij � 1Þ þ 1=2�ðJij þ 1Þ.
We simulate two real replicas fsð1Þi g and fsð2Þi g of the system
and define the overlap, order parameter of the SG transi-

tion, as qðJÞ � 1=N
P

ihsð1Þi sð2Þi i, where h� � �i is the thermal
average. If a FOPT occurs, the order parameter character-
izing the transition is the density of magnetically active

(jsij ¼ 1) sites: �ðJÞ ¼ 1=N
P

ihs2i i or, since we deal with
finite size (FS) systems, its distribution PN;Jð�Þ. The values
of the parameters depend on the particular realization of
disorder (fJijg). Such dependence is self-averaging for the

density probability distribution [PN;Jð�Þ � PNð�Þ �
PN;Jð�Þ for N � 1], but not for the overlap distribution.

We denote by � � � the average over quenched disorder.
Finite size scaling (FSS) for continuous transitions.—In

order to infer the details of the critical behavior from
numerical simulations of FS systems, a fundamental quan-
tity is the four-point correlation function, i.e., the correla-

tion between local overlaps qi ¼ sð1Þi sð2Þi :

C4ðrÞ � 1

N

X

i

hqiqiþri : (2)

The information contained in C4 can be exploited to iden-
tify the existence of a second order phase transition for FS
systems, e.g., looking at a FS correlation lengthlike scaling
function defined, on a 3D lattice, as [27]

�2
c ¼ 1

4sin2k1=2

�
Ĉ4ð0Þ
Ĉ4ðk1Þ

� 1

�
; (3)

where Ĉ4ðkÞ is the Fourier transform of C4ðrÞ, k1 ¼ jk1j,
and k1 � ð2�L ; 0; 0Þ is the minimum wave vector. In the

thermodynamic limit, a second order transition is charac-
terized by a diverging correlation length, at critical tem-
perature Tc, whose FSS behavior is the same as in Eq. (3)
[28,29]. Another relevant observable is the SG susceptibil-

ity �SG � Nhq2i ¼ Ĉ4ð0Þ, diverging at the PM-SG transi-
tion as N ! 1. Because of FS, though, �c and �SG cannot
diverge in numerical simulations. Around the critical re-
gion, however, scale invariance survives. In fact, we can
define a FS ‘‘critical’’ temperature TL

c as the temperature at
which the above-mentioned observables do not depend on
the size. In this scaling region we have

�c=L ¼ ��cð�c=LÞ ¼ ��½L1=�ðT � TcÞ�; (4)

�SGL
��2 ¼ ��ð�c=LÞ ¼ ��½L1=�ðT � TcÞ�: (5)

The critical temperature can, then, be estimated by FSS of
TL
c in the L ! 1 limit.

In order to estimate the critical exponents we use the
FSS quotient method [28], based on the observation that at
TL
c the correlation lengths of different linear sizes L and sL

(in L units) are equal: s�cðTL
c ; LÞ ¼ �cðTL

c ; sLÞ. For an
observable A diverging as txA (t ¼ T=Tc � 1) this implies:

sxA=� ¼ AðTL
c ; sLÞ

AðTL
c ; LÞ þOðL�!Þ: (6)

For a SG we can obtain the exponents �, � by means of the
FSS of the quotients of @	�c and �SG, scaling, respectively,

with exponents x@	� ¼ 1þ � and x�SG
¼ ð2� �Þ�.

Characterization of first order transitions.—The
Clausius-Clapeyron equation for our model, whereD plays
the role of a pressure, reads [16]

dD

dT
¼ sPM � sSG

�PM � �SG

¼ �s

��
: (7)

When the system undergoes a FOPT, a discontinuous jump
in � (and, thus, in q) occurs. At finite N, PNð�Þ displays
two peaks in the coexistence region corresponding to PM
(�PM) and SG (�SG) phases. The FS transition line
DcðN; TÞ can be evaluated as the locus of points where
the two phases are equally probable; i.e., the areas of the
two peaks are equal [30]:

Z �0

0
d�PNð�Þ ¼

Z 1

�0

d�PNð�Þ; (8)

with �0 2 ½�PM; �SG� such that PNð�0Þ ¼ 0 (or minimal
for small N next to the tricritical point).
Exchange Monte Carlo algorithm in T and D.—We

simulated the equilibrium dynamics of our model using
the parallel tempering (PT) algorithm, replicating the sys-
tem in T and in D. For the PT in T, the swap probability of
two copies between T ¼ T and T þ�T is Pswapð�	Þ ¼
min½1; expf�	�H g�. Between D and Dþ �D, it reads
Pswapð�DÞ ¼ min½1; expf	�D��g�. We used the latter to

identify the reentrance of the transition line in the T;D
phase diagram; cf. Fig. 1.
We studied 3D systems with PT in T at D ¼

0; 1; 1:75; 2; 2:05; 2:11, and in D at T ¼ 0:2; 0:3; 0:4; 0:5.
At all D we simulated from 33 to 40 replicated thermal
baths NT at linear size L ¼ 6; 8; 10; 12 (number of disor-
dered sample,NJ ¼ 2000). ForD ¼ 0; 1; 1:75; 2, we simu-
lated NT 2 ½20:33� at L ¼ 16; 20 (NJ 2 ½900:1500�) and
NT 2 ½17:22� at L ¼ 24 (NJ 2 ½500:1000�). For the PT
cycles in D, ND 2 ½21:37�, parallel replicas at different D
were simulated, of L ¼ 6, 8, 10, 12, and 15 (NJ ¼ 1000).
In the latter case varying �D were used, larger in the pure
phases and progressively smaller approaching the coexis-
tence region. The number of Monte Carlo steps varies from
215 to 221 according to L and to the lowest values of T;D
reached. We checked thermalization looking at (i) the
symmetry of the distributions PN;JðqÞ, (ii) the t-log behav-

ior of the energy (coincidence of the last two points), and
(iii) the lack of variation of each observable (e.g., �, �SG)
on logarithmic time windows.
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Numerical results.—In Fig. 2 we present the T behavior
of �=L forD ¼ 0; 1; 2; 2:11. From the FSS analysis of their
crossing points we can determine the critical temperature
and, applying the quotient method [cf. Eq. (6) with s ¼ 2],
we obtain estimates for the critical exponents: � ¼ 2:44ð6Þ,
� ¼ �0:34ð2Þ at D ¼ 0, � ¼ 2:4ð2Þ, � ¼ �0:31ð2Þ at
D ¼ 1, � ¼ 2:1ð2Þ, � ¼ �0:27ð2Þ at D ¼ 1:75. The sys-
tem appears to be in the same universality class of the
Edwards-Anderson model, corresponding to the D ¼ �1
limit of our model [28,31,32]. For D ¼ 2, near the tricrit-
ical point (0:5 & T & 0:54, 2:05 & D & 2:11), the quo-
tient method does not yield reliable estimates because of
a crossover in the scaling functions in the range of probed
sizes (L ¼ 6–24). This comes about because at the tricriti-
cal point the coefficient of the fourth order term in the SG
free energy action goes to zero and the sixth order term
becomes relevant for the critical behavior [19], a typical
behavior of BEGC-like systems [33].

At D ¼ 2:11 no evidence is found for a second order
phase transition whereas a FOPT is observed at T ¼
0:51ð1Þ. This is also the reason why, as shown in the bottom
right-hand panel of Fig. 2, �c=L decays for T & 0:51.

The FOPT is determined by looking at PLð�Þ as two
peaks appear and computing the (D; T) points satisfying
Eq. (8). A pure phase corresponds to a single-peaked
distribution, whose peak is narrower for larger systems.
In Fig. 3 we show the behavior of the P15ð�Þ through the
FOPT inD at T ¼ 0:4 [34]. A detail of the FSS limit of the
IT line DcðTÞ and of the spinodal lines is plotted in the top
inset of Fig. 1. The FS spinodal lines are estimated by look-
ing at the D values at which a secondary peak first arises.

Using Eq. (7), from the knowledge of �� and the
estimate of dD=dT by numerical interpolation we compute
the latent heat j�sj=T ¼ ðsSG � sPMÞ=T employed in the
transition, cf. bottom inset of Fig. 1: as T increases, the PM
acquires latent heat to vitrify; SG entropy is higher than
sPM and the ‘‘frozen’’ phase is found at a higher T than the
fluid one. The IF takes place between a SG of high density
to an almost empty PM (e.g., at T ¼ 0:4, in the coexistence
region D 2 ½2:046ð2Þ:2:092ð5Þ�, �SG ’ 0:52 and �PM ’
0:03). The few active sites do not interact with each other
but only with inactive neighbors, and this induces zero
magnetization and overlap. The corresponding PM phase
at high T has, instead, higher density [e.g., �PMðD ¼
2; T ¼ 0:6Þ ¼ 0:4157ð2Þ, �PMðD ¼ 2:11; T ¼ 0:6Þ ¼
0:596ð2Þ], and the paramagnetic behavior is brought about
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FIG. 2 (color online). Scaling functions �c=L vs T for different
values of the chemical potential D. For D ¼ 0; 1; 2 (L ¼
6; 8; 10; 12; 16; 20; 24) a continuous phase transition is found in
the region of scale invariance. At D ¼ 2:11 (L ¼ 6; 8; 10; 12) no
crossing is observed and at low T, �c=L ! 0.
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FIG. 1 (color online). Phase diagram in D; T: second order
transition and an inverted FOPT occur. In the latter case also the
spinodal lines are reported [gray (red) dashed lines]. Bottom
inset: Latent heat j�sj=T along the first order line. Top
inset: Detail of IF region, interpolation of transition line
Dcð1; TÞ [black (blue) dotted line], spinodal lines [gray (red)
dashed line]. The error bars are the FSS of the minimal interval
in T and D at each L needed to identify the crossings in �c=L
curves (for continuous transitions) or compare the areas under
PNð�Þ for FOPT.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

P
(ρ

)

ρ

L=15
T=0.4

PM

SGDc = 2.065(2)

D=2.0620
D=2.0632
D=2.0644
D=2.0656
D=2.0668
D=2.0677
D=2.0689
D=2.0701

 0.001

 0.01

 0.1

 1

 10

 100

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

FIG. 3 (color online). Density distribution PLð�Þ, L ¼ 15,
across the coexistence region at T ¼ 0:4: two peaks develop at
�PM and �SG. As D increases, the thermodynamically relevant
phase (lowest free energy) passes from SG to PM in a first order
phase transition. The dominant phase corresponds to the one
with larger probability, i.e., larger integral of the peak. As the
peak at �SG vanishes, the system is in a purely PM phase.
Inset: P15ð�Þ on y-log scale.
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by the lack of both magnetic order (zero magnetization)
and blocked spin configurations (zero overlap).

Conclusions.—We focused on a spin-1 SG model on a
3D cubic lattice, whose features try to capture a mecha-
nism underlying IT: the rise of inactive components at low
T. We provide numerical evidence for an equilibrium
inverse freezing phenomenon: at given values of an exter-
nal field, heating up a paramagnet this is transformed into a
SG. The whole phase diagram in temperature T and crystal
field D has been studied both along the continuous tran-
sition line, where critical exponents are computed, and in
the coexistence region, where FOPT line, latent heat curve,
and spinodal lines are reported. This latter observation
confirms the claim of Fernàndez et al. [26] about the
existence of such transitions in quenched disordered
short-range finite-dimensional systems. In the present
model the FOPT can be seen by means of standard PT in
the canonical ensemble, simply tuning an external pressur-
elike parameter [35]. In addition to the peculiarity of
FOPT, inverse freezing is also observed, for the first
time, in a random short-range finite dimension system.
Both features were absent in the same model on a hier-
archical lattice [25], and in the ordered BC model no IT
was observed [23,24].
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Macromolecules 32, 8897 (1999); A. L. Greer, Nature

(London) 404, 134 (2000); N. J. L. van Ruth and S.
Rastogi, Macromolecules 37, 8191 (2004).

[4] M. Plazanet et al., J. Chem. Phys. 125, 154504 (2006);

R. Angelini and G. Ruocco, Philos. Mag. 87, 553
(2007).R. Angelini, G. Salvi, and G. Ruocco, Philos.

Mag. 88, 4109 (2008); R. Angelini, G. Ruocco, and S.
De Panfilis, Phys. Rev. E 78, 020502(R) (2008); E.

Tombari et al., J. Chem. Phys. 123, 051104 (2005).
[5] B. Donnio et al., Adv. Mater. 19, 3534 (2007).
[6] N. Avraham et al., Nature (London) 411, 451 (2001).
[7] G. Tammann, Kristallisieren und Schmelzen (Metzger und

Wittig, Leipzig, 1903).
[8] Generally speaking, at a fixed parameter externally tuning

the interaction strength such as concentration, chemical

potential, or magnetic field.
[9] P. E. Cladis, Phys. Rev. Lett. 35, 48 (1975); 39, 720
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