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The quantitative condition has been widely used in the practical applications of the adiabatic theorem.

However, it had never been proved to be sufficient or necessary before. It was only recently found that the

quantitative condition is insufficient, but whether it is necessary remains unresolved. In this Letter, we

prove that the quantitative condition is necessary in guaranteeing the validity of the adiabatic

approximation.
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The adiabatic theorem reads that if a quantum system
with a time-dependent nondegenerate Hamiltonian HðtÞ is
initially in the n-th instantaneous eigenstate ofHð0Þ, and if
HðtÞ evolves slowly enough, then the state of the system at
time t will remain in the n-th instantaneous eigenstate of
HðtÞ up to a multiplicative phase factor. The theorem was
first introduced 80 years ago [1], has been one of the most
important theories in quantum mechanics [2–6] and has
underpinned some of the most important developments in
physical chemistry [7,8], quantum field theory [9], geo-
metric phase [10], and quantum computing [11]. The prac-
tical applications of the theorem rely on the criterion of the
‘‘slowness’’ required by the theorem, which is usually
encoded by the quantitative condition,�������� hEnðtÞj _EmðtÞi

EnðtÞ � EmðtÞ
��������� 1; m � n; t 2 ½0; �� (1)

where EmðtÞ and jEmðtÞi are the eigenvalues and eigen-
states of HðtÞ, and � is the total evolution time. Although
the sufficiency as well as necessity of the condition had
never been proved before, it had been widely used as a
criterion of the adiabatic approximation. It was only re-
cently found that the quantitative condition is insufficient
in guaranteeing the validity of the adiabatic approximation.
Marzlin and Sanders [12] illustrated that perfunctory ap-
plication of the adiabatic theorem may lead to an incon-
sistency. Tong et al. [13] pointed out that the inconsistency
is a reflection of the insufficiency of the adiabatic condi-
tion, and they further showed that the condition cannot
guarantee the validity of the adiabatic approximation.
Indeed, for a given quantum system defined by Hamil-
tonian HaðtÞ with evolution operator UaðtÞ ¼
T exp½�i

R
t
0 Haðt0Þdt0�, one can always construct another

quantum system defined by Hamiltonian HbðtÞ ¼
i _Uy

a ðtÞUaðtÞ. The two systems fulfill the same adiabatic
condition, but the adiabatic approximation must be invalid
for at least one of them, which indicates that the adiabatic
condition is insufficient. These recent findings have stimu-
lated a great number of reexaminations on the adiabatic
approximation. Some papers contributed to the investiga-
tion of the reasons behind the insufficiency [14–21], while

others contributed to the development of alternative con-
ditions [22–33] or to the examination of the validity of the
quantitative condition in concrete quantum systems [34–
40]. However, so far, whether the quantitative condition is
necessary remains unresolved. It is worth noting that some
authors have claimed that the condition was unnecessary
for the adiabatic approximation [20], and it was restated in
Refs. [21,31,33] but without a convincing argument. Is the
condition really unnecessary? It is of great importance to
put forward an exact proof. In this Letter, we address this
issue. We will show that the quantitative condition defined
by Eq. (1) is necessary in guaranteeing the validity of the
adiabatic approximation. Besides, we reexamine the spin-
half model, from which the nonnecessity was claimed, to
remove the misunderstanding on the condition.
Let us consider an N-dimensional quantum system with

the Hamiltonian HðtÞ. The instantaneous nondegenerate
eigenvalues and orthonormal eigenstates of HðtÞ, denoted
as EmðtÞ and jEmðtÞi, respectively, are defined by

HðtÞjEmðtÞi ¼ EmðtÞjEmðtÞi; m ¼ 1; . . . ; N: (2)

If we assume that the system is initially in the n-th eigen-
state jc ð0Þi ¼ jEnð0Þi, then the state at time t, jc ðtÞi is
dictated by the Schrödinger equation

i
d

dt
jc ðtÞi ¼ HðtÞjc ðtÞi: (3)

In the basis fjEmðtÞig, jc ðtÞi can be expanded as

jc ðtÞi ¼ X
m

cmðtÞjEmðtÞi; (4)

where cmðtÞ ¼ hEmðtÞjc ðtÞi are the time-dependent
coefficients.
We use jc adiðtÞi to denote the following expression,

jc adiðtÞi ¼ ei�ðtÞjEnðtÞi; (5)

where �ðtÞ is usually written as �ðtÞ ¼ �R
t
0 Enðt0Þdt0 þ

i
R
t
0hEnðt0Þj _Enðt0Þidt0: In general, jc adiðtÞi does not fulfill

the Schrödinger equation, i.e., i d
dt jc adiðtÞi �

HðtÞjc adiðtÞi, and hence it is not a solution of the
Schrödinger equation. However, for some quantum sys-

PRL 104, 120401 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 MARCH 2010

0031-9007=10=104(12)=120401(4) 120401-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.120401


tems with Hamiltonians evolving slowly, jc adiðtÞi may
approximately fulfill the Schrödinger equation, i.e.,

i
d

dt
jc adiðtÞi � HðtÞjc adiðtÞi: (6)

In this case, jc adiðtÞi may be taken as a good approxima-
tion of the exact solution jc ðtÞi, i.e.,

jc ðtÞi � jc adiðtÞi; (7)

and it is said that the quantum system is in the adiabatic
evolution. This is the essential idea of the adiabatic ap-
proximation. Note that Eq. (6) is necessary in ensuring that
jc adiðtÞi is a good approximation of the exact solution.
From Eqs. (3), (6), and (7), we have

i
d

dt
jc ðtÞi ¼ HðtÞjc ðtÞi � HðtÞjc adiðtÞi � i

d

dt
jc adiðtÞi;

(8)

which gives

j _c ðtÞi � j _c adiðtÞi: (9)

We stress that one should not take Eq. (9) as a trivial result
of differentiating the two sides of Eq. (7). Equation (9) is
derived from the fact that the wave function describing the
evolution of the quantum system must fulfill the
Schrödinger equation. In passing, we would like to men-
tion that Eq. (9) has been used in the literature by other
authors; for instance, M. Berry [10] has used it to deduce
the famous Berry phase, but here it is the first time to give a
detail discussion on its source. Besides, the validity of the
adiabatic approximation implies

jcmðtÞj ¼ jhEmðtÞjc ðtÞij � 1; m � n: (10)

We now show that the condition (1) can be deduced
from Eqs. (7), (9), and (10). To this end, let us calculate
the coefficients cmðtÞ ¼ hEmðtÞjc ðtÞi,m � n. SinceHðtÞ is
a Hermitian operator, by using Eq. (2), we have
hEmj½HðtÞ � En�jc i ¼ ðEm � EnÞhEmðtÞjc ðtÞi. The coef-
ficients cmðtÞ can be then written as

cmðtÞ ¼ hEmjc i ¼ 1

Em � En

hEmjðHðtÞ � EnÞjc i; (11)

where for abbreviation, we set Em � EmðtÞ, jEmi �
jEmðtÞi, and jc i � jc ðtÞi. The Schrödinger equation (3)
indicates HðtÞjc ðtÞi ¼ ij _c ðtÞi. Equation (11) can then be
written as

cmðtÞ ¼ 1

Em � En

hEmjðij _c i � Enjc iÞ: (12)

Substituting Eqs. (7) and (9) into (12), and further using
Eq. (5) and the relation hEmjEni ¼ �mn, we have

cmðtÞ � 1

Em � En

hEmjðij _c adii � Enjc adiiÞ

¼ ei�

Em � En

hEmjðij _Eni � _�jEni � EnjEniÞ

¼ iei�
hEmj _Eni
Em � En

: (13)

The above calculation shows that if the adiabatic approxi-
mation is valid for the system, cmðtÞmust be approximately

equal to hEmj _Eni
Em�En

up to a phase factor. In the use of Eq. (10),

we finally obtain j hEmj _Eni
Em�En

j � 1. It is exactly the quantita-

tive condition defined by Eq. (1). So far, we have com-
pleted the proof that the quantitative condition is necessary
in guaranteeing the validity of the adiabatic approximation.
Further, we reexamine the model, a spin-half particle in

a rotating magnetic field, from which some authors
claimed that the quantitative condition was unnecessary.
We will substantiate that the quantitative condition is in-
deed necessary in guaranteeing the validity of the adiabatic
approximation. The Hamiltonian of the model can be
written as

HðtÞ ¼ !0

2
ð�x sin� cos!tþ �y sin� sin!tþ �z cos�Þ;

(14)

where !0 is a time-independent parameter defined by the
magnetic moment of the spin and the intensity of external
magnetic field, ! is the rotating frequency of the magnetic
field, and �i, i ¼ x, y, z are Pauli matrices. Without loss of
generality, we suppose !0 > 0, !> 0, and sin� � 0. The
two instantaneous eigenvalues of HðtÞ are E1 ¼ � !0

2 ,

E2 ¼ !0

2 , and the instantaneous eigenstates are

jE1ðtÞi ¼ e�i!t=2 sin�2
�ei!t=2 cos�2

 !
;

jE2ðtÞi ¼ e�i!t=2 cos�2
ei!t=2 sin�2

 !
;

(15)

respectively. The Schrödinger equation for the model reads

i
d

dt
jc ðtÞi ¼ !0

2

cos� sin�e�i!t

sin�ei!t � cos�

� �
jc ðtÞi: (16)

Suppose that the system is initially in the first eigenstate,
jc ð0Þi ¼ jE1ð0Þi. In the basis jE1ðtÞi and jE2ðtÞi, jc ðtÞi
can be expanded as

jc ðtÞi ¼ aðtÞjE1ðtÞi þ bðtÞjE2ðtÞi; (17)

where aðtÞ, bðtÞ are two time-dependent coefficients to be
determined. Substituting Eq. (17) into (16), we may obtain
the differential equations fulfilled by aðtÞ and bðtÞ, from
which we have
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aðtÞ ¼
�
cos

�!t

2
þ i

!0 �! cos�

�!
sin

�!t

2

�
;

bðtÞ ¼ i
! sin�

�!
sin

�!t

2
;

(18)

with �! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ!2 � 2!0! cos�
q

.

For this model, the quantitative condition is !0 �
! sin�, and jc adiðtÞi ¼ eði=2Þ!0tjE1ðtÞi. If the adiabatic ap-
proximation is valid, there must be

jbðtÞj � ! sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ!2 � 2!0! cos�
q � 1: (19)

For convenience’s sake, we denote the term on the left-
hand side of Eq. (19) by fð!0

! Þ, and take it as a function of
!0

! , i.e., fð!0

! Þ ¼ sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!0
! Þ2�2ð!0

! Þ cos�þ1
p . We now analyze the

values of fð!0

! Þ. Noting that the sign of cos� changes

from positive to negative at � ¼ �=2, we pursue the dis-
cussions, respectively, for 0< � � �=2 and for �=2<
�< �. In the first case, where � 2 ð0; �2�, fð!0

! Þ is a mono-

tonic increasing function for !0

! < cos� and a monotonic

decreasing function for !0

! > cos�. It has a maximum at
!0

! ¼ cos�. fð!0

! Þ is always larger than sin� in the interval

0< !0

! � cos� and larger than sin�2 in the interval cos� <
!0

! � 1. The solid line in Fig. 1 is a sketch of fð!0

! Þ for � 2
ð0; �2�. In the second case, where � 2 ð�2 ; �Þ, fð!0

! Þ is a

monotonic decreasing function of !0

! in its domain. It is

always larger than sin�2 in the interval 0< !0

! � 1. The

dashed line in Fig. 1 is a sketch of fð!0

! Þ for � 2 ð�2 ; �Þ.
These calculations show that for a nonzero sin�, the adia-
batic approximation is valid only if !0 � !, which nec-
essarily implies the quantitative condition!0 � ! sin�. If
!0 � ! is not fulfilled, for instance !0 � ! or !0 �!,
the absolute value of bðtÞ in Eq. (17) is in the order of sin�,
and therefore the adiabatic approximation is invalid.

After having demonstrated that!0 � ! sin� is a neces-
sary condition for the adiabatic evolution of the spin-half
system, we now explain what is wrong in the claim that the
quantitative condition was unnecessary. It was argued that
if sin� is small enough, the fidelity between jc ðtÞi and
jc adiðtÞi will then be close to 1, and the adiabatic approxi-
mation would be valid even if!0 � !. Certainly, it is true
that the fidelity may be close to 1 if sin� is small enough,
but this does not imply that the adiabatic approximation is
valid for !0 � !. In fact, jc ðtÞi cannot be expressed as
aðtÞjE1ðtÞi if only sin� is small but not!0 � !. To clarify
this point, let us rewrite Eq. (17) as

jc ðtÞi ¼
�
A1 þ B1

A2 þ B2

�
;

where Ai and Bi are determined by

A1

A2

� �
� aðtÞjE1ðtÞi; B1

B2

� �
� bðtÞjE2ðtÞi:

By using Eqs. (15), (17), and (18), the explicit expressions
of Ai and Bi can be obtained. One may find that B2 relative
to A2 is much smaller, and it is valid to have A2 þ B2 � A2.
Yet, B1 is of the same order as A1, and it is invalid to take
A1 þ B1 � A1. Therefore, one cannot take aðtÞjE1ðtÞi as an
approximation of jc ðtÞi. Furthermore, we can also find the
distinct difference between jc ðtÞi and jc adiðtÞi by compar-
ing the Bloch vectors of them. The exact solution (17) can
be explicitly written as

jc ðtÞi ¼ e�i!t=2 sin�2 ðcos �!t
2 þ i !0þ!

�! sin �!t
2 Þ

�ei!t=2 cos�2 ðcos �!t
2 þ i !0�!

�! sin �!t
2 Þ

 !
: (20)

If!0 � !, we have !0	!
�! � 	1 and �! � !�!0 cos�þ

�, where � ¼ �ð!0

! Þ is of the order !0

! . Equation (20) then

becomes

jc ðtÞi � e�ið!0 cos���Þt=2 sin�2
�eið!0 cos���Þt=2 cos�2

 !
: (21)

Clearly, the Bloch vector of jc adiðtÞi is rotating as fast as
the magnetic field. However, from Eqs. (21), we find that
for the exact solution jc ðtÞi, the rotating rate of its Bloch
vector is about!0, which is far from the rotating rate of the
magnetic field. Therefore, if !0 � !, the system is never
in the adiabatic evolution, no matter how small sin� is. For
instance, if we take � ¼ 0:06 and ! ¼ 10!0, as in
Ref. [20], the rotating rate of the state jc ðtÞi is 10 times
as much as that of jc adiðtÞi although the fidelity between
the two states is close to 1.
In summary, we have proved that the quantitative con-

dition is necessary in guaranteeing the validity of the
adiabatic approximation. One can then conclude that the
quantitative condition is a necessary but insufficient one.
Fulfilling only the quantitative condition may not guaran-
tee the validity of the adiabatic approximation, but violat-
ing the condition must lead to the invalidity of the
approximation. Since the quantitative condition plays an
important role in the practical applications of the adiabatic
theorem and it had been found to be insufficient, the
confirmation of its necessity is of great importance.
Besides, the findings in the Letter have removed all the

FIG. 1. A sketch of fð!0

! Þ. The solid line is for � 2 ð0; �2� and
the dashed line is for � 2 ð�2 ; �Þ.

PRL 104, 120401 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 MARCH 2010

120401-3



previous doubts or misunderstandings on the quantitative
condition. In passing, we would like to point out that the
quantitative condition may be a necessary and sufficient
criterion of the adiabatic approximation for a large number
of interesting quantum systems, although it is difficult to
pick out these systems. This may be the underlying reason
that the quantitative condition is still a powerful tool
widely used by researchers despite the finding of its
insufficiency.
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