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We introduce a model which accounts for the shape of cumulus clouds exclusively in terms of thermal

plumes or thermals. The plumes are explicitly represented by a simple potential flow generated by

singularities (sources and sinks) and are thus laminar, but with their motion create a field which supports

the cloud. We compare this model with actual clouds by means of various shape descriptors including the

fractal dimension, and find agreement.
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It is well known that cumulus clouds (‘‘fair weather
clouds,’’ Fig. 1) form under the influence of thermals—
convection currents which channel moist air upwards. As
the temperature of the air drops with altitude, water vapor
condenses into droplets; the cloud is the collection of these
droplets. Many effects play a role in the formation and
dynamics of clouds, such as the dynamics of droplet
growth around seeds, the heat released by condensation,
and the structure of the turbulent flow. Some of the ques-
tions which are investigated experimentally and through
modeling include the distribution of droplet size and its
evolution [1–3], the spatial distribution of droplets [4,5],
the influence of pollutants [6,7], and, of course, conditions
for precipitation [8].

Here we concentrate on only one aspect of the cumulus
cloud: its characteristic ‘‘cauliflower’’ shape (Fig. 1). We
introduce a simple model which is based on known prop-
erties of thermal plumes; it disregards many of the effects
mentioned above, but still produces the familiar shape.
First we summarize the relevant properties of convection
plumes, established by Moses et al. some 20 years ago
[9,10]. A thermal plume produced by a localized heat
source has a mushroomlike appearance, the cap rising at

constant velocity vp / ffiffiffiffi
P

p
where P is the power input to

the heater. The fluid velocity field outside the cap is well
described by a potential flow which, in the frame of refer-
ence of the rising plume, consists of a source and sink plus
uniform flow �vp (Fig. 2). In particular, the shape of the

cap is given by the flow line through the stagnation points
of this flow (this line separates the ‘‘inside’’ of the cap from
the ‘‘outside’’). The interaction between plumes is well
described by the source-sink pair moving according to the
flow generated by the other sources and sinks (thus two
sinks attract and two sources repel). When two plumes
collide, the final state is one new plume fed by twice the

power, rising at a velocity
ffiffiffi
2

p
vp. Finally, laminar plumes

exist as long-lived coherent structures in fully turbulent
flows, such as high Rayleigh number convection [11]. Our
model of the cumulus cloud consists of a collection of such
plumes and water droplets. The familiar shape—which is

the only characteristic of the cloud which we address—is a
consequence of the flow field produced by the plumes.
In more detail: we imagine a fixed vertical temperature

gradient in the atmosphere, and a collection of Nd droplets.
If a drop falls below the height y1, it disappears (‘‘evapo-
rates’’). All droplets are the same and, for simplicity, the
total number of droplets is kept constant, so when one
droplet disappears a new one is created at random in the
space y1 � y � y2. Droplets are advected by the air flow
and fall under the force of gravity; the velocity of a droplet
at position x is given by

v ¼ uðxÞ � vdŷ; (1)

where uðxÞ is the flow velocity at the position x and vd > 0
is the fall velocity. The flow is created by a collection ofNp

rising plumes; when a plume disappears (dissipates) at y >
y2 a new plume is created randomly at y ¼ y0 < y1. Thus
Np is also fixed, and for simplicity all plumes are the same.

The velocity of the ith plume is given by

v i ¼ uiðxÞ þ vpŷ; (2)

where vp is the rising velocity of the plume and ui the flow

field without the contribution of the ith plume. The flow
field uðxÞ in Eq. (1) is the sum of all the contributions from
the instantaneous positions of the plumes. A plume starts as
a source-sink pair separated by a distance r0 (Fig. 2). The
flow field uðxÞ created by one source of strength s at
position xi is derived from the potential

FIG. 1. Cumulus cloud photographed by the authors in the sky
of Philadelphia.
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�ðxÞ ¼ s

jx� xij ; uðxÞ ¼ �r� ¼ s
x� xi
jx� xij3

; (3)

s > 0 for a source, and for the corresponding sink s ! �s.
So far the parameters of the model are Np, s, vp, vd, r0,

h ¼ y2 � y1. To simplify the parameter space, we choose

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
s=vp

q
, which is the distance from the source to the

stagnation point (Fig. 2); thus the plume is characterized by
a single length scale r0. A reasonable guess of dimension-
less control parameters is then the ratio of the rising
velocity of the plume to the falling velocity of the droplets

� ¼ vp

vd

(4)

and the volume fraction occupied by the plumes

’ ¼ Npr
3
0

V
; (5)

where V ¼ A� h is the volume of the cloud (A is the area
where the plumes are generated). For example, it is intui-
tive that if � is small and/or ’ is small, droplets fall out of

the cloud, whereas if � is large and ’� 1, the droplets
remain in the cloud.
In the simulation we use the cutoff r0 to handle the

collision of plumes: if two sinks approach within r0, the
corresponding two plumes are replaced by a new plume at

the ‘‘center of mass’’ position, rising with velocity
ffiffiffi
2

p
vp.

Similarly, when a droplet approaches a sink within r0, it is
moved to a symmetric position in front of the plume. For
the sake of convenience, we also ran simulations in 2D;
then the velocity potential is � / lnðjx� xijÞ and corre-
spondingly r0 ¼ s=vp, ’ ¼ Npr

2
0=V where V is now an

area.
Figure 3 shows ‘‘snapshots’’ of the same cloud at differ-

ent times, obtained from the 2D simulation. The top of the
cloud displays the familiar ‘‘cauliflower’’ shape. In real
cumulus clouds the average droplet size is in the range
10–50 �m [12,13], which corresponds to fall velocities of
2–100 cm=s. Updraft velocities are in the range 1–10 m=s
[14,15], so values of � between 1 and 103 are realistic.
Figure 4 shows a snapshot of a cloud obtained with the 3D
simulation. The appearance could be improved with a
suitable illumination scheme taking into account light
scattering inside the cloud [16]; however, this is a separate
problem not connected with the hydrodynamic model.
Qualitatively, for ‘‘large’’ ’ (’> 0:1) the top of the cloud
becomes more rugged as � is decreased (we ran simula-
tions for � ¼ 30 and � ¼ 5); for ‘‘small’’ ’ (’< 0:1) the
cloud looks already rugged for � ¼ 30 and as � is further
decreased the top takes on more the appearance of
filaments.
For quantitative comparisons, the boundaries of a real

cloud and a simulated 2D cloud are extracted from Figs. 1
and 3 (with more droplets), respectively, and shown in the
inset of Fig. 5. Commonly used shape descriptors are the
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0

0

FIG. 2 (color online). In the frame of reference of the ascend-
ing plume, the flow outside the plume can be described by a
source-sink pair plus a uniform downward flow. The flow line
through the stagnation points defines the boundary of the plume.
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FIG. 3. Four ‘‘snapshots’’ of the distribution of droplets obtained from the same 2D simulation at different times. The initial
condition is a uniform, random distribution of droplets. The cloud contains 1000 droplets, and the model parameters were ’ ¼ 0:08,
� ¼ 30, Np ¼ 6.
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radius-vector function and curvature function, which we
calculate following [18,19]. A reference pointO is selected
at the center bottom of the cloud. The horizontal line
crossing O is chosen as the x axis. The radius-vector
function Rð�Þ is the distance from the reference point O
to the boundary in the direction of �, and is shown in Fig. 5.
Because of the position of O, 0 � � � �. We have nor-
malized the radii R’s to [0, 1] in Fig. 5, which amounts to
rescaling the size of the clouds. The radius-vector func-
tions of simulated and real clouds are qualitatively similar,
reflecting the similarity in global shape of the two clouds.
A statistical measure of the behavior of the radius-vector
functions is the ‘‘roughness coefficient’’ �, defined as [18]

� ¼ 1

��

Z �M

�m

R2ð�Þd��
�
1

��

Z �M

�m

Rð�Þd�
�
2
; (6)

where�� ¼ �M � �m is the range of the angle � and �M ¼
maxð�Þ, �m ¼ minð�Þ. The difference of roughness coef-
ficients between the simulation and the real cloud (Fig. 5)
is �� & 5%.

An alternative shape descriptor is the curvature � as a
function of arc length s [18]:

�ðsÞ ¼ d�ðsÞ
ds

: (7)

Based on the boundary data shown in the inset of Fig. 5, we

calculated the curvature functions. If we compare the
‘‘bending energies’’

E ¼ 1

L

Z L

0
�ðsÞ2ds (8)

we find a difference of �E � 13%. The (unnormalized)
distribution of the curvature � is plotted in Fig. 6. While the
similarity between the model and the real cloud is obvious,
more interesting are their negative skewness. The distribu-
tions are left skewed, which reflects the fact that the
boundary of clouds consists more of caps ( ___ ) than
cups ( ^^^ ). In addition, the distributions are not
Gaussian. Large �’s in both the simulated cloud and real
cloud are more frequent than in the Gaussian distribution.
It has been remarked that clouds have fractal shapes in a

range of scales [20–22], with fractal dimensions ranging
from 1.164 [21] to 1.35 [22]. Figure 7 shows the estimated
fractal dimensions of the real cloud (Fig. 1) and the simu-
lated cloud (Fig. 3 with Nd ¼ 10 000) using the box-
counting algorithm [23], D ¼ log½nðrÞ�= logð1=rÞ, where

FIG. 4 (color online). Snapshot of the distribution of droplets
obtained from the 3D simulation, with ’ ¼ 0:1, � ¼ 10, Np ¼
9. The 3D plot was generated using the molecular visualization
program VMD [17]: each droplet is represented by a puffy ball.
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FIG. 6. The distribution of the curvature of the real cloud
(filled squares) of Fig. 1 and the simulated cloud (circles) of
Fig. 5. Both distributions are negative skewed and non-Gaussian.
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FIG. 5. Radius-vector functions of a real cloud (filled squares)
and a simulated cloud (circles) based on the boundaries (the
inset) of the real cloud (thick, solid) from Fig. 1 and a simulated
cloud (thin, dashed) from Fig. 3 (but with Nd ¼ 10 000 droplets).
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FIG. 7. Graph of the box-counting algorithm applied to the
boundaries of the real cloud (filled squares) in Fig. 1 and the
same simulated cloud (circles) as in Fig. 5. nðrÞ is the number of
boxes of size r needed to cover the cloud boundary. The slopes
give the corresponding fractal dimensions: Dr ¼ 1:26� 0:01
(real) and Ds ¼ 1:36� 0:01 (simulated).
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nðrÞ is the number of boxes of size r needed to cover the
cloud boundary. The fractal dimensions obtained from
Fig. 7 are Dr ¼ 1:26� 0:01 and Ds ¼ 1:36� 0:01, for
real and simulated cloud, respectively.

For a given volume V of the cloud, the model is specified
by the 4 parameters Np, s, vp, vd. The time scale, 	 ¼
h=vd, represents the lifetime of the cloud in the absence of
plumes. However, in the regime where the cloud is sup-
ported by plumes, three out of these four parameters are
sufficient to determine the dynamical state of the cloud.
Choosing ’, �, Np as control parameters, we can then

explore the phase diagram of the model. For example,
Fig. 8 shows the number of droplets which ‘‘evaporate’’
(fall below the line y ¼ y1) in the time 	,Nð	Þ, plotted vs’
at constant � and Np. The figure shows that graphs ob-

tained for different values of s collapse onto a single curve
(i.e., ’, �, Np are a complete set of control parameters).

We also see a transition in the behavior of the system for
’ � 0:1.

In conclusion, we introduce a model which accounts for
the shape of cumulus clouds in terms of thermal plumes.
The physical effects which pertain to the formation and
dynamics of clouds—thermal convection, adiabatic expan-
sion, condensation and evaporation, and so on—are of
course well known, and indeed realistic clouds are obtained
by integrating the corresponding set of differential equa-
tions with appropriate effective terms to link the thermo-
dynamics and fluid motion [16,24]. Alternative
formulations in terms of coupled map lattices are similarly
useful in discussing the ‘‘phase diagram’’ of clouds [25].
At the other extreme, one can also produce realistic look-
ing clouds by constructing heuristic random density fields
with the measured statistical properties of clouds [26]. The

present approach starts not with the equations of fluid
motion, but at a ‘‘mesoscopic’’ level with the coherent
structures which form in the flow. This is reminiscent of
quasiparticles in other condensed matter systems, a con-
cept which so far has been of limited utility in the theo-
retical representation of hydrodynamic turbulence.
However, it appears that for this system, the shape of the
cloud is determined by these coherent structures.
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FIG. 8 (color online). The number of droplets Nð	Þ which
‘‘evaporate’’ (fall below the line y ¼ y1) in the time 	 ¼
h=vd. The volume fraction of plumes ’ is varied keeping � ¼
30 and Np ¼ 6 constant (thus 	 varies with varying ’). The data

collapse for different values of s indicates that ’, �, and Np

specify the dynamical state of the system. The data are from the
2D simulation. A transition is apparent for ’� 0:1.
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