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We use specialized Monte Carlo simulation methods and moment free energy calculations to provide

conclusive evidence that dense polydisperse spheres at equilibrium demix into coexisting fcc phases, with

more phases appearing as the spread of diameters increases. We manage to track up to four coexisting

phases. Each of these is fractionated: it contains a narrower distribution of particle sizes than is present in

the system overall. We also demonstrate that, surprisingly, demixing transitions can be nearly continuous,

accompanied by fluctuations in local particle size correlated over many lattice spacings.
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Suspensions of spherical colloids have long served as an
experimentally accessible testing ground for our under-
standing of the liquid, crystalline, and glassy states of
matter [1,2]. Such work is complemented by theory and
simulation, which attempt to reproduce, rationalize, and
predict experimental results. In so doing, it is common to
treat the suspension as an assembly of identical spheres.
But this neglects a key feature, namely, that the chemical
processes by which real colloids are synthesized invariably
produce particles that have a spread of diameters; i.e., they
are ‘‘polydisperse.’’ As is becoming increasingly clear,
polydispersity gives rise to a rich variety of novel phe-
nomena not observed in monodisperse systems [3].
However, despite sustained attention, basic questions re-
main concerning its effects on one of the most fundamental
aspects of any thermal system, namely, the equilibrium
phase behavior.

A case in point is the character of the thermodynami-
cally stable structures of size-disperse spheres in the dense
regime, above typical fluid densities. Polydispersity should
act to destabilize a crystal because of the difficulty of
accommodating a range of particle sizes within a single
lattice structure, but there has been no definite answer as to
what stable structures arise instead. Indeed, the nature and
extent of the influence of polydispersity both on the crys-
talline phases and the location of the freezing line is
controversial. On the theoretical front, there is a diverse
range of predictions of novel phenomena including reen-
trant melting [4], an ‘‘equilibrium glass’’ phase [5], and
solid-solid coexistence [6–8]. Additionally, recent simula-
tion work has reported the occurrence of a partly crystal-
line ‘‘inhomogeneous phase’’ within an approximate phase
diagram based only on equality of single-phase free ener-
gies [9,10]. Other simulations suggest that the fluid-solid
coexistence region terminates in a critical point beyond
which a disordered solid occurs [11]. On the experimental
side, studies of colloidal systems observe that beyond a
certain ‘‘terminal’’ polydispersity no crystallization occurs

on experimental time scales [1], although it remains un-
clear whether this is a true equilibrium effect or a mani-
festation of dynamic arrest.
A crucial distinction between monodisperse and poly-

disperse systems at phase coexistence is the ability of the
latter to fractionate so that the distribution of the particle
diameters � varies from phase to phase [12–14]. If for a
certain phase (labeled�), one counts the number density of
particles having diameters in the range � . . .�þ d�, this

serves to define a density distribution �ð�Þð�Þ. Experi-
mentally, however, for most complex fluids one has the
constraint that the overall distribution of sizes (across all
phases) has a form fixed by the synthesis of the fluid. This

gives rise to a generalized lever rule: �ð0Þð�Þ ¼P
����

ð�Þð�Þ, with �� the fractional volume occupied by

phase �, �ð0Þð�Þ the ‘‘parent’’ density distribution and

�ð�Þð�Þ the ‘‘daughter’’ distributions. Since the form of
the parent is fixed, only its scale is free to vary, e.g., by

dilution with solvent, and one writes �ð0Þð�Þ ¼ n0fð�Þ,
where n0 is the total number density and fð�Þ is a pre-
scribed normalized shape function. The polydispersity � is
then defined as the standard deviation of the parent distri-
bution, in units of its mean.
The diversity of theoretical and simulation findings

stems from the sensitivity of the results to the accuracy
with which fractionation is treated. Previous work has
either disregarded fractionation entirely, or used drastic
(and differing) approximations to describe it. An exception
are moment free energy (MFE) theory calculations, which
do account fully for fractionation, and which have previ-
ously been reported by one of us for hard spheres [15].
These predict that increasing polydispersity shifts the fluid-
solid coexistence region to higher number densities, but
that neither reentrant melting nor a terminal polydispersity
occurs. Instead, the fluid can always split off a small
volume of dense phase whose size distribution is suffi-
ciently narrow for crystallization. Moreover, as one in-
creases n0 or � within the solid region, a succession of

PRL 104, 118302 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 MARCH 2010

0031-9007=10=104(11)=118302(4) 118302-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.118302


phase transitions is predicted in which the system demixes
into an ever greater number of differently fractionated
‘‘daughter’’ phases. However, the MFE calculation uses
approximate free energy expressions, which for solids are
derived from those of binary mixtures and implicitly al-
ready assume that all solids are fcc. Independent confirma-
tion of its predictions is then highly desirable, but has
hitherto been lacking. In this Letter we provide a definite
answer to the question of the nature of the equilibrium
phase behavior via state-of-the-art Monte Carlo (MC)
simulations, and compare with MFE calculations; both
fully provide for fractionation and employ a fixed parent
size distribution.

In simulations the appropriate framework for observing
genuine equilibrium behavior in dense polydisperse parti-
cles is the isobaric semigrand canonical ensemble [16,17].
This is the analog of a monodisperse (N, p, T) ensemble
where the prevalence of different particle sizes is con-
trolled by imposing in addition chemical potential differ-
ences ��ð�Þ that are measured relative to the chemical
potential of some reference particle size. Monte Carlo
sampling of this ensemble can exploit particle resizing
moves to allow local sampling of the size distribution
without the need for particle diffusion (thus catering for
fractionation effects), while volume updates facilitate den-
sity fluctuations so that the system can transform between
phases. Our study is the first to deploy this ensemble in the
crystalline regime together with a method for imposing a
fixed overall parent distribution. This allows determination
of physically realistic phase behavior including the
boundaries of the onset of coexistence (known as cloud
curves) and daughter distributions. Additionally we can
calculate—but do not show here—shadow curves which
record the density and volume fraction of the new phase
when coexistence first occurs. Cloud and shadow curves do
not coincide, demonstrating further the presence of frac-
tionation: new phases that appear generically have size
distributions different from the parent [3]. We combine
the above techniques with the specialized phase switch
Monte Carlo (PSMC) method [18,19] for obtaining fluid-
solid coexistence properties. In both cases, the chemical
potential differences ��ð�Þ are determined iteratively to
match the ensemble-averaged density distribution h�ð�Þi
to the prescribed parent �ð0Þð�Þ ¼ n0fð�Þ. At coexistence,
this is supplemented by an equal peak weight criterion for
the order parameter distribution to ensure that finite-size
effects are exponentially small in system size [20,21].

We stress that the choice of ensemble and use of sophis-
ticated sampling and analysis techniques are crucial to
observing qualitatively correct phase behavior in polydis-
perse systems. Use of standard canonical [9] or micro-
canonical ensembles [10,11] is unequal to the task and
almost certainly yields major artifacts. The reasons for
this are threefold: (i) the dynamics is too slow to allow
fractionation on simulation time scales; (ii) the sizes of the
particles are fixed, which for a finite system prevents

daughter distributions assuming an arbitrary form as they
can in the thermodynamic limit; (iii) these ensembles
necessarily form interfaces between coexisting phases
and for accessible particle numbers one cannot hope to
see multiple coexisting crystalline phases when this occurs.
Our simulations consider a system of 256 particles

interacting via a strongly repulsive pair potential

vðrijÞ ¼ �ð�ij=rijÞ12; (1)

with particle distances rij ¼ jri � rjj and interaction radii

�ij ¼ ð�i þ �jÞ=2. The choice of this potential rather than
infinitely repulsive (hard) spheres is made on pragmatic
grounds: an MC contraction of the simulation box that
leads to an infinitesimal overlap of two hard spheres will
always be rejected, so (particularly at high densities) we
can expect higher MC acceptance rates using this ‘‘softer’’
potential. In common with hard spheres, the monodisperse
version of our model freezes into an fcc crystalline struc-
ture [19,22], and temperature only plays the role of a scale:
the thermodynamic state depends not on n0 and T sepa-

rately but only on the combination n0ð�=kBTÞ1=4. Phase
diagrams for different T then scale exactly onto one an-
other, and we can fix �=kBT ¼ 1.
We consider parent size distributions of the top-hat

form:

fð�Þ ¼
� ð2cÞ�1 if 1� c � � � 1þ c;
0 otherwise:

(2)

The width parameter c controls the polydispersity � ¼
c=

ffiffiffi
3

p
, and we have set the mean particle diameter to 1.

With these choices, and the interaction potential (1), our
results are directly comparable to the phase diagram of
Ref. [9] where neither fractionation nor, at a more basic
level, the presence of coexistence regions of finite width
was allowed for.
Using the PSMC method we have mapped the cloud

curves of the fluid-solid transition, using � as our control
parameter, up to polydispersities of � � 8:7% on the fluid
side and � � 7% for the solid, both of which are in the
typical range for colloidal systems, but not so great that we
expect to see exotic phases such as AB13. As shown in
Fig. 1(a), both the fluid (circles) and the solid (squares)
phase cloud densities shift to higher n0 as � is increased,
but without the sharp narrowing that would be required for
a reentrant melting scenario [4].
Turning now to the solid region, a comprehensive ex-

ploration of the (n0-�) plane is impractical because of the
relatively high computational cost of our specialized simu-
lation technique. But we can understand important quali-
tative features by following the dashed trajectory included
in Fig. 1(a). Along this path, we monitored the state of the
system via the probability distribution of the fluctuating
total number density pðnÞ, which serves as an order pa-
rameter for phase changes. Starting from the fcc solid
cloud point at � ¼ 6:3%, we initially increased n0 in a
stepwise fashion (filled circles) to n0 ¼ 1:45, and then
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switched to increasing � at constant n0 as a potentially
faster route to demixing. Indeed, at � � 8% there was a
smooth change in pðnÞ from single to double peaked; an
example of the double peaked form is shown in Fig. 2. The
two associated phases were identified as being fcc solids.
As is physically reasonable, the higher density solid (HDS)
daughter phase contains a surplus of the smaller particles
while the lower density solid (LDS) phase has more of the
larger particles.

Continuing to higher � eventually led to spontaneous
melting of the system at � ¼ 13:7%, implying that the
limit of metastability with respect to a fluid-solid-solid
(FSS) coexistence had been overstepped, as is indeed
predicted by our MFE calculations (see below). We there-
fore backtracked slightly into the solid-solid (SS) region,
embarking on a new trajectory with increasing n0 at con-
stant � ¼ 13:5%. This produced a third peak in pðnÞ at
n0 � 1:475. The corresponding intermediate density solid
(IDS) was again found to be isostructural with the other
two, with dominant particle sizes between those in the
HDS and LDS. Finally, increasing the overall density to
n0 � 1:68 we observed that the central IDS peak in pðnÞ
split rather smoothly into two peaks, yielding a four peaked
structure (Fig. 2): four fcc solids now divide the range of
particle sizes among themselves (Fig. 3).
We next compare to our theoretical MFE calculations.

These used the same parent size distribution (2) but, since
no suitable polydisperse model free energies are available
for the soft repulsive potential (1), the analysis was per-
formed for hard spheres, using the methodology described
elsewhere [15]. The qualitative physics should be the same.
Indeed, taking a comparable path [23] through the calcu-
lated phase diagram [Fig. 1(b)] shows the same features as
in the simulations. (Quantitatively, the fluid-solid coexis-
tence region is narrower, and transitions to multiple solids
occur at lower n0 and �, presumably because with a hard
repulsion, a crystal can accommodate above average-sized
particles less easily.) Also the fractionation effects are well
reproduced, as shown in Fig. 3(b) for an SSSS state point at
a location comparable (relative to phase boundaries [23])
to the one in Fig. 3(a).
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FIG. 3. (a) Solid: parent distribution at (n0 ¼ 1:73, � ¼
13:5%). Symbols: Simulation results for the four daughter dis-
tributions. The associated fractional volumes �� are (left to
right) 0.209, 0.188, 0.232, 0.373. (b) MFE results at the compa-
rable state point (n0 ¼ 1:232, � ¼ 8:7%); fractional volumes are
0.273, 0.162, 0.200, 0.365.
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FIG. 1 (color online). (a) Simulation results for the partial
phase diagram of the model (1) with parent distribution (2).
Asterisks: points where new solid phases appear; dashed lines:
phase boundary slopes found by histogram reweighting. F ¼
fluid, S ¼ solid. Colored (or shaded) symbols: state points
considered in Fig. 2. (b) MFE calculation of phase diagram of
hard spheres with the same parent form. The dashed line shows a
trajectory comparable to that followed by the simulations.
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FIG. 2 (color online). Distribution of the overall number den-
sity pðnÞ at the SS and SSSS state points indicated by the colored
(or shaded) symbols in Fig. 1(a).
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A surprising feature of our results is that, from the
variation of pðnÞ, the transitions S ! SS and SSS !
SSSS appear to be near continuous in character, while
SS ! SSS is strongly first order as is usually expected
for transitions in the solid state. A near-continuous tran-
sition should be accompanied by size fluctuations corre-
lated over large distances, as precursors of the new phases,
whereas the fluctuations will remain small on approaching
a first order transition. To quantify these fluctuations we
measure a correlation volume �3 from the variance across
configurations of the mean particle size ��. Suitably nor-
malized, this variance hð� ��Þ2i is proportional to the spatial
integral over the pair correlation g��0 ðrÞ, weighted by
deviations of the particle sizes � and �0 from the mean,
i.e., the correlation volume. In theoretical calculations,
hð� ��Þ2i can be extracted from second derivatives of the
MFE [13]. Measurements of �3 along the trajectories
through the phase diagrams are shown in Fig. 4. This grows
large near the transitions to two and four solids, confirming
their near-continuous character. In the latter case, the split-
ting of the middle peak seen earlier in pðnÞ suggests that
the new solids arise out of the IDS phase, and this is
consistent with large fluctuations occurring (see Fig. 4)
only in this phase and not the HDS or LDS. The MFE
predictions are, again, in good qualitative accord with the
simulation data.

Our tailored simulations have provided a clear answer to
long-standing questions surrounding the effect of size
polydispersity on the equilibrium phase behavior of spheri-
cal particles: as density and/or polydispersity are increased
within the crystalline region, the system demixes into an
ever increasing number of fractionated fcc phases. Given
the high level of qualitative accord with MFE calculations,
we are confident that this scenario represents the true
equilibrium situation. Since the MFE results are insensitive

to whether the parent distribution is top hat (present work)
or has a Schultz or triangular form [15], we believe the
demixing scenario to be quite general. Understanding in
detail when and why the demixing transitions are near
continuous is an exciting open challenge. Finally, we
note that in spherical colloids demixing transitions may
not always be directly observable because fractionation
requires particle diffusion which is inhibited in solids.
Nonetheless, one might expect to see evidence for solid
demixing in regions where the solids coexist with a fluid
[cf. Fig. 1(b)] that can transport particles to their preferred
solid phase. Even in situations where equilibrium cannot
be reached for kinetic reasons, knowledge of the true
equilibrium state provides an important baseline for inter-
preting dynamical effects [2,24].
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FIG. 4. Correlation volume �3 in the solid phases encountered
along the phase diagram trajectories of Fig. 1. (a) Simulations,
(b) MFE calculations.
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