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A model is presented for the characterization of dissipative effects on highly nonlinear waves in one-

dimensional dry granular media. The model includes three terms: Hertzian, viscoelastic, and a term

proportional to the square of the relative velocity of particles. The model outcomes are confronted with

different experiments where the granular system is subject to several constraints for different materials.

Excellent qualitative and quantitative agreement between theory and experiments is found.
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There exist a considerable number of engineering appli-
cations where surfaces are subjected to contact loading,
with stress applied over small areas. Nevertheless, it is a
complex matter to understand the nature of the contact of
solid surfaces. A first step towards this understanding
started with the work by Hertz [1]. Using potential theory,
he developed a model for the normal contact on noncon-
forming bodies of elliptical shapes, under several assump-
tions that simplified the problem. One of the hypotheses on
which his work was based is that the contact between solids
is purely elastic.

A place where Hertz theory finds application is in the
study of granular matter. This kind of matter is present
everywhere in nature and has wide practical importance
(see, e.g., [2]). Hertz theory has been useful in understand-
ing many aspects of granular matter [2–4], but its applica-
bility is limited because in many situations the impact
between grains is such that energy dissipating phenomena
become relevant. Such phenomena, involving, for ex-
ample, elastoplastic and viscoelastic behavior [5], are so
complex that it is hard to think of a closed form force law
that may describe them all at once.

However, energy loss can be measured experimentally,
at the macroscopic level, by measuring the coefficient of
restitution, which has been observed to decrease with the
normal component of the relative impact velocity [6]. In
this case, Hertz theory fails to reproduce the behavior of
the coefficient of restitution. In [7,8], the authors have
developed a quasistatic approximation to calculate the
normal force acting between colliding particles, assuming
a viscoelastic force (see also [9] where this force law
appears in a related context, and [10] for a first-principles
derivation of the viscoelastic term). Within this approach,
where the force acting between beads is a combination of
Hertz and viscoelastic terms, theory and experiment agree
for the behavior of the coefficient of restitution with ve-
locity [11].

In this Letter, a model that combines Hertz theory, a
viscoelastic force as in [7,8], and a force proportional to the
square of the relative velocities of beads is presented. It is
shown that this model reproduces in an excellent way the

effect of dissipation on a solitary wave in stainless steel,
brass, and polytetraflouroethylene (PTFE) obtained by
Daraio et al. [12]. It also coincides very well with the
behavior of solitary wave trains in a column of stainless
steel beads [13] and with the description of incident and
reflected solitary waves in a column of PTFE balls [14]. To
simulate such systems, I follow as closely as possible the
experimental setup, including the reduction by less than
5.5% in mass of beads with inserted piezosensors.
Let xiðtÞ represent the displacement of the center of the

ith sphere, of massmi, from its initial equilibrium position.
The equations of motion that describe the dynamics of N
beads, inclined by an angle �, in a gravitational field are
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with i ¼ 2; . . . ; N � 1. As known, the equations of motion
for the first and last beads differ from Eq. (1) and are thus

not written down here. The notation is as follows: _�i ¼
_xi � _xiþ1 is the relative velocity of beads i and iþ 1. The
overlap between adjacent beads is �i ¼ maxf�i;iþ1 �
ðxiþ1 � xiÞ; 0g, ensuring that the spheres interact only
when in contact. For the same reason a step function in
the third term has been included, that is, �i ¼ �½�i;iþ1 �
ðxiþ1 � xiÞ�. �i;iþ1 ¼ ðg sin½��imi=Ki;iþ1Þ2=3 appears

from the precompression due to the gravitational interac-
tion. The expression for the Hertz coupling Ki;j between

beads i and j is well known and depends on radii, Young
moduli, and Poisson ratio of beads [5]. Although the form
of parameter A is known for a binary collision [8], it is used
here as a free parameter, like B itself. The set of Eqs. (1) is
solved by using an explicit Runge-Kutta method of the 5th
order with an embedded error estimator, from
MATHEMATICA.

Our explanation for our ansatz is as follows: after the
impact, the dynamics becomes a multi-impact problem;
this produces that the relative velocity of beads i and iþ 1,
_�i, may change from _�i < 0, related to an expansion phase,
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to _�i > 0, corresponding to a compressional phase. The
same happens for the relative velocity of beads i� 1 and i,
_�i�1. Therefore, by fixing our attention on one bead in the
chain, say ith, one has a particle between two moving walls
(beads i and iþ 1) and then its dynamics depends on the
dynamics of both constraints. It is worthwhile to mention
that a term proportional to the square of the velocity was
introduced by Pöschl [15] as an attempt to extend the Hertz
theory to plastic bodies. Also notice that if beads i� 1, i
and iþ 1 are all in contact at a given instant, one can easily
observe that the third term can be generically written as

_x 2
i�1 þ 2� _x2i þ � _x2iþ1 þ 2� _xið _xi�1 � � _xiþ1Þ; (2)

where the constants take the values � ¼ 0, 1, � ¼ �1,� ¼
�1, � ¼ �1, depending on the sign of the relative veloc-

ities _�i and _�i�1. Observe that the force term included in
this Letter is a combination of two terms, only one of them
being dissipative [16].

In Ref. [12], the effect of dissipation on the behavior of
solitary waves was clearly shown. Beads made of stainless
steel, brass, and PTFE, and a wall of aluminum were used
in the experiment. Their Young modulus and Poisson ratio
are (i) stainless steel: E ¼ 193� 109 Pa; � ¼ 0:30;
(ii) brass: E ¼ 115� 109 Pa; � ¼ 0:31; (iii) PTFE: E ¼
1:46� 109 Pa; � ¼ 0:46; and (iv) aluminum: E ¼ 69�
109 Pa; � ¼ 0:33. Strikers with the same mechanical prop-
erties as beads were used to generate solitary waves; the
force on piezosensors was recorded, and the data presented
as plots of force as a function of time.

In Fig. 1, the numerical findings from our model are
compared with those shown in Fig. 1(b) of Ref. [12], that
is, for a chain composed of N ¼ 70 stainless steel beads,
and impactor velocity v1 ¼ 1:77 m=s. Sensors are placed
in beads 9, 16, 24, 31, 40, 50, 56, and 63. A global time
shift of 25 	s of the extracted data was necessary in order
to compare our findings with the experimental data from
Fig. 1(b) of Ref. [12]. This shift possibly can be ascribed to

an experimental time offset. Also, in the data received by
the author, sensors appear in pairs, say sensors 2 and 4
(e.g., beads 16 and 31 for stainless steel). Thus, in order to
compare this experimental data with the simulation, the
original experimental data has been shifted such that the
time interval between both maxima in the data is kept
fixed, within an error of 0:2 	s. Thus, this shift does not
represent a change in the time of flight, lying within the
experimental errors. Figure 1 also shows, as an inset, the
percentage error between experiment and simulation. One
observes that this error is below 20% for the maximum
amplitude, getting worse when approaching the wings of
the signal, which is not surprising from the experimental
point of view. Figure 2 shows a detail of Fig. 1, using
original data, for the force recorded at beads 16 and 56. As
one can see, the agreement between simulations and ex-
periment is quite impressive. One possible combination of
values of the parameters, not necessarily the optimal one,
that gives a quite remarkable coincidence with experiment
is A ¼ 800 and B ¼ �1:9.
In Fig. 3, a striker with initial velocity v1 ¼ 1:55 m=s

impacts on a chain of N ¼ 69 PTFE beads and a chain of
N ¼ 61 brass spheres. Forces are recorded by sensors at
beads 38 and 49, respectively. The numerical values of the
parameters that caused theory and experiment to coincide
are A ¼ 100 and B ¼ �0:26, for PTFE, and A ¼ 770 and
B ¼ �2:9, for brass.
In the following, the simulation findings from our model

are compared with those from experiments carried out by
Nesterenko et al. with a column of PTFE beads [14] lying
on a wall made of brass. There, solitary waves were
generated by impacting the column of 21 beads, each
with radius 2.38 mm and mass 0.123 g, with a PTFE ball
with the same characteristics and with a 2:0 m=s impact
velocity, the mechanical properties of materials being the
same as above. In Figs. 4(a) and 4(b), there appear the
incident and reflected perturbations recorded at positions
12 and 16, respectively, while Fig. 4(c) shows the behavior
of the solitary wave at the wall. Because of the lack of
detailed experimental information, global time shifts by
26 	s and 38 	s where applied to get coinciding incident
perturbations in Figs. 4(a) and 4(b), respectively, while for
Fig. 4(c), the shift made was 31 	s. Observe that the

FIG. 1 (color online). The continuous curve shows our nu-
merical findings. Open circles and error bars are experimental
data extracted from Fig. 1(b) of Ref. [12]. The experimental
outcome from sensors 16, 31, 40, and 56 is also shown. The inset
shows the percentage error between experiment and simulation
for beads 16 (triangles) and 40 (circles).

FIG. 2 (color online). The figure shows the force as a function
of time for beads (a) 16 and (b) 56 for stainless steel. Dashed
lines correspond to the numerical results.
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simulation fits quite well the experimental data. The same
numerical values for the parameters of the model in case of
PTFE are used, i.e., A ¼ 100 and B ¼ �0:26.

To end the tests on the validity of the model, the simu-
lation results are compared with the outcomes from experi-
ments carried out by Nesterenko et al. with a column of
stainless steel beads [13]. The data, extracted from their
paper, are used to show that the model reported here
successfully describes the behavior of highly nonlinear
waves on hard walls. In order to create the nonlinear
waves, a column of 21 stainless steel beads, each with a
mass 0.45 g, was struck by a cylindric alumina impactor,
with Young modulus E ¼ 416� 109 Pa and Poisson ratio
� ¼ 0:23. The cylinder has a mass 1.2 g and a velocity
equal to 0:44 m=s. The force is recorded by embedding
piezosensor in beads 12 and 16 (measured from the top of
the column), and at the wall; the piezogauge at the wall was
covered by a brass cover plate. As expected, because the
impactor’s mass is much larger than the mass of beads,
trains of highly nonlinear solitary waves are excited by the
impact. Figure 5 shows an excellent agreement between
model and experiment; it must be stressed that the numeri-
cal values for the parameters are the same as before: A ¼

800 and B ¼ �1:9. In order to compare experiment
and simulation, the data were shifted 47 	s for Figs. 5(a)
and 5(b), 45 	s for Fig. 5(c). The small time difference, of
the order 7 	s, between the pulse amplitudes from the
simulation and the experiments observed in Figs. 4, 5(a),
and 5(b) can be ascribed to the combined properties of both
wall and piezosensor. If a softer wall is assumed, the time
difference and the amplitude of the reflected wave (and the
force at the wall) can be reduced.
Finally, I compare the contribution of the viscoelastic

and velocity-squared terms, using the force on bead 10.
The Hertz interaction is by far the leading term and it is not
included here. In Fig. 6, the force on bead 10 is plotted
against time; time units are not made explicit because not

FIG. 3 (color online). Plots showing force as a function of
time, for an impact velocity of v1 ¼ 1:55 m=s, for (a) PTFE
(bead 38), and (b) brass (bead 49).

FIG. 5 (color online). Scattering of highly nonlinear waves off
a wall for stainless steel beads at positions: (a) 12 and (b) 16. In
(c) the sensor is at the wall. Data are shown as dots and
numerical results as a solid line.

FIG. 4 (color online). Scattering of highly nonlinear waves off
a wall for PTFE beads at positions: (a) 12 and (b) 16. In (c) the
sensor is at the wall. Dots represent experimental data and the
solid line the numerical output.

FIG. 6 (color online). (a) shows viscoelastic (1) and velocity-
squared (2) forces as a function of time on bead 10, for beads of
stainless steel [dashed (1) and dotted (2) lines], brass [long (1)
and short (2) dot-dashed] and PTFE [thin (1) and thick (2)
continuous], with the conditions of Figs. 1–3. (b) shows the
force terms in case of reflected waves, using the data used in
Figs. 4 and 5, for stainless steel [thin (1) and thick (2) continu-
ous] and PTFE [dashed (1) and (2) dotted].
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all of the plots correspond to the same time interval. Also,
in Figs. 6(a) and 6(b) force values at the right-hand side
correspond to PTFE. In Fig. 6(a), one observes that both
terms give a contribution of the same order, but in some
time intervals each acts in opposition to the other. A
slightly different situation appears in the case of the re-
flected perturbations, as seen in Fig. 6(b). In this case, there
is a time interval where both force terms reinforce their
contribution. Also observe that the velocity-squared force
term is a continuous, although not smooth, function of
time. Nevertheless, this is not crucial for reproducing the
experimental data.

In conclusion, a model that reproduces experimental
outcomes for the behavior of highly nonlinear dissipative
waves, for different materials and under different condi-
tions, in one-dimensional dry granular media has been
found. Excellent qualitative and quantitative agreement
between theory and experiments is found, within the ex-
perimental errors of measurements of either force ampli-
tude or time of flight, mostly depending on the Hertz
interaction. The force term added in this Letter, propor-
tional to the square of the relative velocity of particles,
completes a previous physical model composed of Hertz
and viscoelastic interactions which, without this term, is
unable to reproduce experimental outcomes for the behav-
ior of dissipative highly nonlinear waves. The new force
term originates from multiple impacts within the system
and is composed of two parts, one of which is dissipative.
The model is economical, requiring only two parameters
that depend on the mechanical properties of beads, one of
them being well known and with clear physical origin. In
addition, the parameter values do not need to be changed in
order to fit simulations with experiments carried out under
different conditions, and are found through a single fit
procedure. Of course, if one is looking for the optimal
set of parameters, one should perform a more complete
analysis, like the one done in [12]. The model is, of course,
not universally valid and, for example, is useless for de-
scribing the generation of oscillatory shock waves in soft
materials as PTFE.
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