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We study low energy collective modes and transport properties of the ‘‘helical metal’’ on the surface of

a topological insulator. At low energies, electrical transport and spin dynamics at the surface are exactly

related by an operator identity equating the electric current to the in-plane components of the spin degrees

of freedom. From this relation it follows that an undamped spin wave always accompanies the sound mode

in the helical metal—thus it is possible to ‘‘hear’’ the sound of spins. In the presence of long range

Coulomb interactions, the surface plasmon mode is also coupled to the spin wave, giving rise to a

hybridized ‘‘spin-plasmon’’ mode. We make quantitative predictions for the spin-plasmon in Bi2Se3, and

discuss its detection in a spin-grating experiment.
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Introduction.—Recently, topological insulators have
been theoretically predicted and experimentally observed
in both quasi-two-dimensional (2D) and three-dimensional
(3D) systems [1–7]. The concept of a topological insulator
can be defined within the noninteracting topological band
theory [8,9] or more generally within the topological field
theory [10], which is also valid for interacting systems. The
simplest topological insulators such as Bi2Se3 and Bi2Te3
have a full bulk insulating gap and a surface state consist-
ing of a single Dirac cone [5–7]. As is the case for the
helical edge states of a 2D topological insulator [11,12],
the spin and the momentum are intimately locked in the
‘‘helical metal’’ surface state of the 3D topological insula-
tor. This locking effect has been theoretically predicted [6]
for Bi2Se3 and Bi2Te3, and experimentally observed [13]
in Bi2Se3.

In this Letter, we study the universal surface state prop-
erties of the simplest 3D topological insulators, and con-
sider a system governed by a single isotropic Dirac cone at
energy scales much lower than the bulk insulating gap. We
study the consequences of the helical nature of the metallic
states: the coupling between spin and charge excitations,
and collective modes of the helical liquid. Our theory here
is directly applicable to the case of the Bi2Se3-Bi2Te3
family, which has a single isotropic Dirac cone that re-
mains isotropic for low dopant concentrations.

Spin dynamics and electrical transport.—Starting from
a low energy effective Hamiltonian for the bulk of a 3D
topological insulator in the Bi2Se3 family, the low energy
surface Hamiltonian was derived by Zhang et al. [6] by
diagonalizing the bulk effective Hamiltonian with open
boundary conditions, and by integrating out the high en-
ergy bulk degrees of freedom. In Ref. [6], it was shown that
for a surface in the xy plane, the helical states at low
energies are governed by

H ¼
Z

d2xc yðxÞf@vf½ẑ� ð�irÞ� � � ��gc ðxÞ; (1)

where k is the Bloch vector in the 2D surface Brillouin

zone and � the Pauli matrices describing electron spin.
Here,� is the value of the chemical potential relative to the
surface Dirac point. This Hamiltonian adequately captures
the dynamics of the surface for energies much smaller than
the bulk gap �, and for length scales much larger than
@vf=�, the penetration depth of the gapless surface states

into the bulk. In this regime, there are several universal
features that characterize the surface states. First there is
the operator identity relating the charge current to the in-
plane component of the spin on the surface:

j ðxÞ ¼ c yðxÞvfð� � ẑÞc ðxÞ � vfSðxÞ � ẑ: (2)

Such a simple relation between charge current density and
spin density is the key observation of this work, which is a
unique property of the helical liquid, and leads to many
intrinsic correspondences between spin and charge dynam-
ics in the system. It should be noticed that the operator
identity Eq. (2) remains valid even when interaction terms
are added to the Hamiltonian, as long as the interaction
term does not involve spatial derivatives. The only devia-
tion from this identity comes from the change of Fermi
surface shape due to rotational symmetry breaking, which
has been observed in Bi2Te3 when the chemical potential is
close to the bottom of the bulk conduction band [7]. In this
regime, the Fermi velocity obtains an Oðk=kfÞ2 distortion
[14,15], and the operator identity above no longer rigor-
ously holds. However, there is still a one-to-one correspon-
dence between the velocity and spin of the surface
electrons, so that many conclusions we will discuss in the
following will still hold qualitatively in this regime.
In what follows, we will assume a perfectly circular

Fermi surface in the continuum limit. From the above
identity (2), we derive the important dynamical identity
between correlation functions

v2
f�ik�jlhT�sið�Þsjð0Þi ¼ hT�jkð�Þjlð0Þi; (3)

which relates the electric transport to the dynamical spin
structure factor in the linear response regime. The electric
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response of the helical metal can thus be calculated from
the generalized spin and density susceptibility

���ðq; i�mÞ ¼
X
kk0

X
���	

Z �

0
d�ei�m�hT�c

y
k�


�
��ckþq�ð�Þ

� cy
k0þq�


�
�	ck0	ð0Þi; (4)

with 
� ¼ ð1;�Þ. In particular, the optical conductivity


xxð!Þ is simply related to dynamical spin susceptibility:

xxð!Þ ¼ i

! v
2
f�yyð!Þ (with momentum q ¼ 0), while the

Hall conductivity is related to the off-diagonal dynamical
spin susceptibility 
xyð!Þ ¼ � i

! v
2
f�yxð!Þ. In principle,

this relation can be verified by comparing the optical
conductivity with the experimental results of spin-
polarized neutron or polarized light scattering. Because
of the rotational invariance of the Fermi surface about
the ẑ axis, the longitudinal (sL ¼ q̂ � s) and transverse
[sT ¼ ẑ � ðq̂� sÞ] components of the spin excitations are
decoupled. The density-transverse spin block of the sus-
ceptibility tensor can be determined from theWard identity
that has its origin in the continuity equation for the density:
@tnq ¼ �iqjLq , where jLq ¼ q̂ � jq is the longitudinal cur-

rent. The Ward identity, combined with the operator iden-
tity in Eq. (2) gives us

@tnq ¼ �ivfqs
T
q : (5)

We note that the longitudinal current is simply the trans-
verse spin degree of freedom.

The structure of the density and spin response bears a
remarkable resemblance to source-free Maxwell electro-
dynamics in 2þ 1 dimensions, as first pointed out in
Ref. [16]. The analogy is made precise when we identify
the density with the ‘‘magnetic field’’ perpendicular to the
surface, and the transverse spin components with the
‘‘electric field’’ in the plane of the surface. Equation (5)
can be written as @tn ¼ �r� sT in the real space. The
equation of continuity that connects the density to the
transverse spin is thus precisely the Faraday law for this
system. Moreover, Gauss’ law for the electric field r �
sT ¼ 0 is satisfied by construction, since the spins are
transverse to the in-plane momentum. A similar identifi-
cation has been made for a system with Rashba spin-orbit
coupling [16]; however, the analogy to electrodynamics is
less precise in Rashba systems than in the case of the
helical metal due to the presence of the quadratic disper-
sion in the Rashba Hamiltonian.

Applying the Ward identity to the response functions,
we find that the density and transverse spin subset of the
susceptibility tensor in the basis (n, sT) has the form

� ¼ 1 x
�x �x2

� �
�nn; x ¼ !

vfq
: (6)

We note that in order to obtain this form, we need to
regularize the susceptibility tensor, taking the � ¼ 0
ground state as the vacuum [17,18].

The bare susceptibilities can be evaluated explicitly for
arbitrary ! and q using the noninteracting Green function

Gð0Þðk; i!nÞ ¼ ½i!n �H ðkÞ��1

¼ X
s¼�1

P s

i!n � svfkþ�
;

P s ¼ 1

2
½1þ sðẑ� k̂Þ � ��:

(7)

As shown in Fig. 1, we find that particle-hole excitations
are found everywhere except for vfq < !< 2�� vfq. In

this region, the imaginary components of all the suscepti-
bilities vanish and collective excitations are undamped.
Collective modes.—In the long-wavelength, low fre-

quency limit, q � kf, ! � �, the noninteracting density

susceptibility to leading order is

�nn ¼ �

2�@2v2
f

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p � 1

�
; x ¼ !þ i	

vfq
; (8)

with corrections Oðq=kfÞ2. Thus, for !> vfq, the imagi-

nary part of the density and spin susceptibilities vanish and
undamped collective modes exist. To determine the collec-
tive mode spectrum in this regime, we treat the suscepti-
bility tensor within the random phase approximation
(RPA).
In the case of the long-ranged Coulomb interaction

UðqÞ, the RPA correction to the susceptibilities in Eq. (6)
is given by

�̂ RPAðq; !þ i	Þ ¼ �̂

�
1̂�UðqÞ

2
ð1̂þ �̂zÞ�̂

��1
; (9)

where �̂ is the density and transverse spin susceptibility in
Eq. (6) and �z is a Pauli matrix in the same basis. It can be
shown explicitly that the 4� 4 susceptibility tensor de-
composes into two 2� 2 matrices, one with the density
and transverse spin, and the other with the perpendicular
(sz) and the longitudinal spin, so that we only need to
consider the 2� 2 susceptibility in Eq. (6) in the RPA
correction. The result of the RPA correction turns out to
be the same as an ordinary 2D Fermi liquid:

�̂ RPA ¼ 1 x
�x �x2

� �
�nn

1�U�nn

; x ¼ !

vfq
: (10)

Collective mode excitation spectra are obtained via the
poles of the matrix of RPA susceptibilities. For the
Coulomb interaction UðqÞ ¼ 2�@�vf=q, where � ¼
e2=�dhvf (�d being the dielectric constant of the topologi-

cal insulator) is the helical metal fine structure constant.
Therefore the plasmon dispersion satisfies

@vfq

��
¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p � 1; (11)

which for small q establishes that plasmon modes are
gapless and propagate with a dispersion

! ¼ �

@

ffiffiffiffiffiffiffiffiffiffi
�

2

q

kf

s
; (12)

similar to an ordinary Fermi liquid in 2D. Note that in order
for the plasmon to propagate, the solution to Eq. (11) needs
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to stay in the unshaded region of Fig. 1, which means that
for frequency above !c ¼ ð�=2Þð�=@Þ, the plasmon will
merge into the particle-hole continuum. We expect @!c �
2:2 meV for the Bi2Se3 family; this comes from �d 	 100
[19] and vf 	 5:0� 105 m=s with � typically around

100 meV [5,13].
In sharp contrast to the conventional Fermi liquid, the

surface plasmon of the helical liquid always carries spin,
and could be appropriately called the spin plasmon. This is
a consequence of the equation of continuity for the density
and the operator identity, Eq. (2): @tnq ¼ �iqsTq . Thus, a

fluctuation in the density will be accompanied by a trans-
verse spin fluctuation due to the ‘‘Faraday law’’ that cou-
ples them. In Fig. 2, the nature of the spin plasmon is
shown pictorially at a fixed ! and q. A density oscillation
induces a transverse spin wave in perfect analogy with
Maxwell electrodynamics in 2þ 1 dimensions. At the
peaks and troughs of the density wave, the transverse
spin components are zero, whereas regions where the
density variations vanish are accompanied by a maximum
spin polarization. The locking of the spin and charge
degrees of freedom in the spin-plasmon collective mode
is unique to the helical liquid and marks a striking differ-
ence relative to the ordinary Fermi liquid. From the equa-
tion of continuity and the dispersion relation of the spin-
plasmon, it follows that the ratio of the transverse spin
amplitude sT to the density amplitude of the spin plasmon
is

sT
n

¼
ffiffiffiffiffiffiffiffiffi
�kf
2q

s
: (13)

Thus, in the long wavelength limit q=kf ! 0, the spin

fluctuation associated with the spin plasmon can be much
larger than the density fluctuation.

For short-ranged Hubbard-like interactions, the RPA
susceptibilities are

�̂ RPAðq; !þ i	Þ ¼ �̂½1̂�U�̂z�̂��1 (14)

The reason for this difference in the RPA susceptibilities is
that short-ranged Hubbard-like interactions can be decom-
posed in both the density and spin channels, both of which
contribute to RPA diagrams, whereas the Coulomb inter-
action can only be decomposed in the charge channel in the
RPA approximation. In both cases, the RPA susceptibilities
satisfy the Ward identity.
The zero-sound spectra for short-range interaction can

be determined by the pole of Eq. (14), which is given by

2�@2v2
f

U�
¼ ðx2 þ 1Þ

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p � 1

�
: (15)

In this case, there is an essential difference from the
ordinary Fermi liquid. The right-hand side of Eq. (15) takes
its value in the range ½12 ;þ1Þ, so that the equation has a

solution only if 4�@2v2
f=U�> 1, or U <Uc ¼

4�@2v2
f=�. The sound wave dispersion for the two limit-

ing cases U � Uc and U & Uc is

! ¼
�vfq

�
1þ 8U2

U2
c

�
; U=Uc ! 0;

vfq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7
4

U
Uc�U

q
; U=Uc ! 1:

(16)

Physically, the disappearance of the sound mode for strong
interaction U >Uc can be understood as a consequence of
the attractive interaction in the spin channel: note that the
interaction vertex in Eq. (14) for the density correlation
�nn has the opposite sign of the vertex for the transverse
spin correlation �TT . In an ordinary Fermi liquid with
repulsive short range interaction, the same argument leads
to the damping of the spin wave, but does not affect the

SS

n

q

22
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x
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FIG. 2 (color online). The spin-plasmon collective mode: a
density fluctuation (green surface) induces a transverse spin-
fluctuation (red arrows) or vice versa. To detect the spin plas-
mon, a spin-density wave is generated by a spin grating. Two
orthogonally polarized noncollinear incident beams (relative
angle of 2�) induce a spin polarization wave. The transverse
component of the photon helicity is P cos� cos’, where P is the
total photon helicity amplitude and ’ is the beam plane makes
with the surface. The induced plasmon charge oscillation can be
detected by conventional means.
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FIG. 1 (color online). Dispersion of the collective modes in the
long wavelength regime. The plasmon (solid red line) is shown
for � ¼ 0:6 and the zero-sound (dashed blue line) mode is
shown for U ¼ 0:3Uc. The shaded region denotes the particle-
hole continuum where the imaginary parts of the density and
spin susceptibilities are nonzero. The collective modes are long-
lived in the unshaded region vfq < !< 2�� vfq.
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zero sound since the spin and charge response are de-
coupled (or only weakly coupled in systems with weak to
moderate spin-orbit coupling). By contrast, in the helical
spin liquid, the spin and charge responses are intrinsically
coupled due to the operator identity Eq. (2), so that the
sound wave can be damped even for a repulsive interaction.

Spin-grating measurements.—Our basic method of de-
tecting the spin-plasmon mode is to excite the spin degree
of freedom and to detect the propagating density wave
coupled to the spin polarization wave. In other words, we
generate transverse spin polarization and detect the in-
duced density wave, which we can measure through spatial
modulation of reflectivity.

For generating the transverse spin wave, we propose a
method similar to the transient spin grating (TSG) used in
Refs. [20,21]. For our version of TSG, shown in Fig. 2, we
need to have two noncollinear femtosecond laser beam
pulses incident on the topological insulator surface, with
ẑ set as the surface normal; the wave vector directions of
these two beams are (� sin�, � cos� cos’, � cos� sin’).
By linearly polarizing the two beams in orthogonal direc-
tions, we can generate by interference alternating photon
helicity in the direction ( sin�, � cos� cos’, � cos� sin’)
with the grating vector q along x̂; the q can be varied by
changing the relative phase between the two interfering
beams. For the persistent spin helix experiment, Ti:sap-
phire lasers (wavelength 650� 1100 nm) were used to
obtain q ¼ 0:34� 2:5� 104 cm�1 [21]; this q value
would suit our purpose (a typical kf with � lying in the

bulk gap can be taken as 107 cm�1 for Bi2Se3 or Bi2Te3
[5,7,13]). So long as we keep the two beams’ polarization
orthogonal and intensity equal, this photon helicity wave
does not directly generate any density wave. However, the
spin polarization wave it generates will have a nonzero
sT / cos� cos’ for ’ � �=2. After the laser pulses are
applied, the transverse spin components sT propagate
through the spin-plasmon collective mode. For the range
of q given above, and from Eq. (13), we estimate that the
density amplitude detected is approximately 10% of the
initial transverse spin amplitude. On the other hand, other
spin components are Landau damped. Note that intensity I
of the induced density-spin wave has ’ dependence, which
vanishes for ’ ¼ �=2 since in that case sT ¼ 0.
Observation of such dependence would be a strong evi-
dence confirming our helical liquid theory.

In conclusion, we presented a general theory of the
collective modes of the helical liquid. We derived a general
relation between the charge current and the spin density
which is valid for interacting systems so long as the inter-
actions are weak compared to the bandwidth of the surface
states. We show that the spin-plasmon mode propagates on
the surface of a topological insulator, and propose a ex-
perimental setting to detect this mode. The spin-plasmon
mode unifies spintronics and plasmonics, two frontier

branches of current research, and can be used for spin
transport in spintronics devices.
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