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We show that porous alloys can display thermal conductivity reductions at considerably larger pore

sizes than nonalloyed porous materials of the same nominal porosity. The thermal conductivity of

Si0:5Ge0:5 alloy with 0.1 porosity becomes half the nonporous value at 1000 nm pore sizes, whereas

pores smaller than 100 nm are required to achieve the same relative reduction in pure Si or Ge. Using

Monte Carlo simulations, we also show that previous models had overestimated the thermal conductivity

in the small pore limit. Our results imply that nanoporous alloys should be advantageous with respect to

nanoporous nonalloys, for applications requiring a low thermal conductivity, such as novel

thermoelectrics.
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There is common consensus that important thermal
conductivity reductions should be expected in nanoporous
materials, as the diameter and distance between the nano-
pores are made smaller [1–4]. However, concrete trends
beyond this qualitative assessment are not yet clearly
understood. In fact, we will show here that some of the
dependencies previously predicted stem from oversimpli-
fications in the model used, rather than from the real
physical behavior of the system. Also, most previous ef-
forts have concentrated on the thermal conductivity of
nanoporous nonalloy matrices, such as pure Si. Previous
works addressing SiGe considered nanocomposites com-
prising individual nanosized parts of pure Si and pure Ge,
but they did not address the case where the matrix is a
random alloy at the atomic level [5]. Here we show that the
thermal conductivity of nanoporous alloys behaves in a
qualitatively different way than that of nonalloys, and this
may be very advantageous for certain applications.

We have focused on the thermal conductivity of parallel
pore arrangements, in the direction parallel to the pores. To
investigate these systems, a cylindrical geometry approxi-
mation (CGA) was proposed in Ref. [3], where the thermal
conductivity was found by numerical solution of the fre-
quency independent Boltzmann transport equation. In par-
allel, the CGA was also employed in Ref. [2], which
provided the exact analytical solution to the Boltzmann
equation for this geometry. An extension of this analytical
calculation to the frequency dependent case was given in
Ref. [6]. The CGA consists in replacing the porous me-
dium by a single pore surrounded by a specularly reflecting
cylindrical boundary [2,3]. This in principle should mimic
the fact that when a phonon gets away from the pore, it will
approach a different pore nearby. The other boundary
condition, at the surface of the pore, can be chosen to be
partly or totally diffusive.

The results presented in Refs. [2,3] numerically agree
with each other, as they should. However, the CGA em-
ployed there leads to the peculiar result that, for fixed pore

volume fraction (or porosity), the thermal conductivity
does not decrease indefinitely upon pore size reduction,
but saturates below a certain pore size. The reason why this
occurs is implicit in the analytical solution [2], which
shows the presence of a continuous range of phonon direc-
tions that keep circling around the system without ever
colliding with the pore [see Fig. 1(a)]. This finite fraction
of phonons gives a contribution equal to the bulk thermal
conductivity weighted by the fraction of angles in which

the infinite circling occurs, F ¼ 1� 2 arcsinð ffiffi
�

p Þ
� , where � is

the porosity. So the saturated thermal conductivity for
infinitely small, infinitely close pores, is given by � ¼
ð1� �ÞF�bulk. Obviously, this result is linked to the model,
and the question is whether the predicted saturation has any
physical meaning. Intuitively, it is apparent that the real
pore configuration will not show any continuous range of
angles that do not intersect a pore: sooner or later, a line in

FIG. 1. (a) A drawback of the CGA: in the small pore radius
limit some phonons never collide with the pore. (b) Square
arrangement geometry used for the three dimensional
Monte Carlo calculation. (c) Top view of the nanopore array.
(d) Geometry used for the analytical interpolation Eq. (2).
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any chosen direction should hit a pore. (This excludes high
symmetry directions, if one considers ordered arrange-
ments; but even then, the range of ‘‘unblocked’’ angles is
not continuous, in contrast with the CGA.) Thus, the
answer to whether a saturation should occur is not obvious,
and the way the thermal conductivity might depart from the
CGA prediction is a priori unclear.

To answer these questions we have implemented a
Monte Carlo (MC) simulation of phonon transport through
a three dimensional array of parallel pores. The pores are
organized in a square mesh configuration Fig. 1(c). This
allows us to reduce the simulation to a cell containing one
pore, with periodic boundary conditions in the (x, y) direc-
tions [Fig. 1(b)] [7]; the system is bounded between two
perfectly absorbing phonon blackbody reservoirs in the z
direction.

First, we have investigated how much the mean free
paths � are affected due to the presence of the pores. �
is computed as a function of the bulk mean free path �0,
the pore radius r, and the porosity �. The interpore dis-

tance, �, is related to the pore radius and porosity as � ¼
2rðð0:5= ffiffiffi

�
�

p Þ � 1Þ. An additional variable is the length of

the system, L [Fig. 1(b)], which needs to be taken in the
long length limit.

To obtain the effective mean free path, one launches a
large number N of particles (phonons) from one end of the
system (z ¼ 0), and lets them evolve until they come out
through either side (z ¼ L or z ¼ 0). Phonons are injected
at z ¼ 0 with a random initial direction and random initial
position in thex, y plane within the primitive mesh. The
fraction of particles that transmit across the whole length,
Nthrough, reaches a diffusive type dependence with length

for sufficiently long systems, given by

Nthrough=N ’ ð1þ L=�Þ�1: (1)

We perform the simulation enlarging L until the above
behavior is attained with enough precision. The mean
free path is then evaluated from the slope of the inverse
throughput fraction, using Eq. (1).

The phonon trajectories are described by a MC tech-
nique [8]. A random direction and a free path s are gen-
erated after each scattering event. sis obtained as
s ¼ � lnRs ��0, where Rs is a random number between
0 and 1. It can be verified that this model is equivalent to
other descriptions based on time steps discretization [9,10],
and that it yields the correct solution to the diffusion
equation. The simulations employed 106 phonons, which
ensures satisfying statistical averages. L was increased
until a good accuracy was obtained (�99%).

In order to verify that this method accurately yields the
mean free paths, we have first applied it to reproduce the
CGA results given analytically in Ref. [2]. As shown in
Fig. 2(a), the numerical MC results (open symbols) are in
very good agreement with the exact analytical results (red
lines). This makes us confident that our computations for
the fully 3D square geometry are also accurate.

The shortening of the mean free path with pore size for
the real systems is shown as closed symbols in Fig. 2(a).
The figure shows that when the intrinsic bulk mean free
path �0 is larger than the pore size and interpore separa-
tion, the size effect becomes important. However, contrary
to the CGA’s prediction (red lines), no saturation occurs at
small pore size. The mean free path keeps decreasing
indefinitely as the pores become smaller. It is tempting to
associate the decrease with a formula of the Casimir type,
in which the role of the system’s size would be played by
the interpore separation d, as �� d [11]. However, the
log-log plot in Fig. 2(a) shows that this oversimplified form
does not match the results, except when the volume frac-
tion exceeds �

4 . When � > �
4 the nanopores touch each

other, so that the system becomes an array of parallel
independent nanowires, which is well described by ��
d [12]. However, for � < �

4 the system becomes connected,

and the thermal conductivity depends on d more slowly.
We can understand this behavior as follows. Within the

unit mesh depicted in Fig. 1(d), we have a fraction of the
boundary C ¼ 1=ð1þ 2�=�rÞ (thick solid line) that is
covered by the pores. The remaining fraction, 1� C
(thin solid lines), is open and it allows the particles to
traverse into a neighboring mesh. Most of the phonons
that traverse to a neighboring mesh via the opening be-
tween pores, will do so in a rather shallow angle. This
means that the effective row of pores seen by those pho-
nons looks more like two continuous parallel plates [dotted
lines in Fig. 1(d)]. One can therefore try to interpolate the
total mean free path as a simple combination of the Casimir
type mean free path for a wire of radius r [11],
�casimirð!Þ ¼ ð1=�0ð!Þ þ 1=ð2BrÞÞ�1, and the mean free
path for a thin film given by Lucas [13], �Lucasð!;DÞ ¼
�0ð!Þð1� 3�0ð!Þ

4D

R
1
0 2ðx� x3Þð1� e�D=x�0ð!ÞÞdxÞ. B is a

parameter associated to the shape of the wire’s cross sec-
tion, and D is the thickness of the equivalent film.
Therefore, a plausible form is

�ð!Þ’C�casimirð!Þþð1�CÞ�lucasð!;A�r=
ffiffiffi
�

p Þ; (2)

FIG. 2 (color online). (a) Dimensionless mean free path for
� ¼ 0:1, 0.3, 0.6, and �

4 , calculated by: MC CGA approximation

(open symbols), analytical CGA (red lines), MC fully 3D (closed
symbols), and Eq. (3) (black lines). (b) Conductivity of Si, Ge,
and Si0:5Ge0:5 at 30% and 60% porosity. The symbols correspond
to the CGA result for Si with � ¼ 0:3 (circles) and � ¼ 0:6
(squares).
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where A � D
ffiffiffi
�

p
=r is the only adjustable parameter. B

should not be considered adjustable; rather, it corresponds
to the case of � ¼ �

4 , when the system becomes a nanowire

array, with B ¼ 0:85.
The proposed formula works remarkably well. Fig-

ure 2(a) shows a comparison between the MC (closed
symbols) and analytical (black lines) results for a large
range of porosities and pore sizes. The best fit was obtained
for A ¼ 1:85. This formula is extremely practical, because
it allows for a very fast computation of the effective mean
free paths (MFP) of the nanoporous material, for any
values of�0, r, and �, with good accuracy. This is advanta-
geous in the application of these results to compute the
thermal conductivity of concrete nanoporous materials,
detailed below.

In the relaxation time approximation, the thermal con-
ductivity can be expressed as an integral over frequencies
of the form [Eq (10) of Ref. [12]]

� ¼
Z xc

0

dfB
dT

�ð!ÞT 0ð!Þ@!d!=2�; (3)

where T 0ð!Þ¼ 1
2

P
6
�¼1

R
BZ�ð!�!�ð ~qÞÞjd!�ð ~qÞ

dqx
jd ~q=2�,

�ð!Þ is the total mean free path, and fB is the Bose
distribution. The thermal conductivity of the nanoporous
material is therefore given by the equation above, using the
mean free paths computed via the MC simulation,�ð!Þ ¼
�MCð�0ð!Þ; �; rÞ, where �0ð!Þ is the bulk MFP of the
matrix material. The phonon dispersion relations for Si and
Ge were obtained via the Harrison interatomic potential
[12,14]. The phonon dispersion for SiGe was considered in
the standard virtual crystal approximation, by averaging
the force constants of Si and Ge. The bulk MFP’s �0ð!Þ
for Si and Ge were computed in the way explained in
Ref. [12], and they yield a good match to the bulk crystal
thermal conductivity in the 50–900 K temperature range.
The bulk MFP for the alloy includes the additional alloy
scattering term [15,16]. We verified that the experimental
bulk alloy thermal conductivity [15] is well reproduced up
to temperatures of 900 K. Using the interpolation expres-
sion, Eq. (2), combined with the knowledge of �0ð!Þ
allows us to efficiently compute �. In addition to the full
dispersions approach just described, we also tried the non-
dispersive model introduced at the end of Ref. [12] [see
Eq. (15) in this reference, and also Refs. [16,17]], obtaining
results very close to the ones yielded by the full dispersions
model.

The computed room temperature thermal conductivities
of nanoporous Si, Ge, and Si0:5Ge0:5 are shown in Fig. 2(b)
as a function of pore radius, for various porosities. For
comparison, results using the CGA mean free paths are
also plotted for the Si case (filled symbols). The differences
become very large as the pore radius becomes small
enough to visibly affect the mean free path. This graph
shows that the CGA yields a quite inaccurate representa-
tion of the phonon MFP and � of the nanoporous system.

An even more striking finding is the noticeably different
behavior of the alloy and nonalloy material thermal con-
ductivities as a function of pore size. This is clear on the
plot of the porous material conductivity normalized by the
bulk material conductivity, in Fig. 3. The alloy material is
considerably affected by the presence of a 10% porosity
already at pore sizes of 1000 nm, whereas the pure Si and
Ge cases are barely affected at this pore size. Only below
100 nm pore size do the 10% porosity pure Si and Ge
matrices start displaying a size effect. These pore sizes
become about 5 times bigger for porosities close to the
nanowire limit (� ¼ �=4.) The room temperature thermal
conductivity of bulk Si0:5Ge0:5 is just 1 order of magnitude
smaller than those of Si or Ge, but this difference becomes
2 orders of magnitude when comparing nanoporous mate-
rials with r� 200 nm at 10% porosity, or with r�
1000 nm at 60% porosity. Below this diameter, the de-
crease becomes faster in the nonalloys. Nonetheless, the
absolute thermal conductivity of SiGe always stays smaller
than that of Si or Ge for the same porosity and size, as one
would expect.
The reason for the pore effect being noticeable in the

alloy at considerably larger pore diameters than in the
nonalloy case, is related to the very sharp dependence of
the alloy scattering mean free path. Alloys have a reduced
thermal conductivity well below that of their individual
components, because atomic scale disorder can scatter
short wavelength phonons very efficiently. Longer wave-
length phonons, however, can have mean free paths many
orders of magnitude larger than the short wavelength ones.
For nonalloys, the contrast between long and short wave-

FIG. 3 (color online). (a) Thermal conductivity of Si, Ge, and
Si0:5Ge0:5 at 1% and 10% porosity, normalized by their bulk
values. (b) Thermal conductivity of Si and Si0:5Ge0:5 at 30% and
60% porosity, normalized by their bulk values. (c) �ðTÞ for
different pore sizes, for Si and Si0:5Ge0:5 at 30% porosity.
(d) Relative contribution Ið�Þ to the thermal conductivity asso-
ciated to phonons with MFP’s shorter than �, plotted as a
function of �ð!Þ, for bulk Si and Si0:5Ge0:5 at room temperature.
(I ! 1 in the limit � ! 1.)
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length mean free paths is not so marked, and a considerable
amount of heat is carried by the short wavelengths.
Introducing nanopores affects the long wavelengths more
strongly than the short ones. This is because the former
have longer mean free paths than the latter, and according
to Fig. 2(a), the effect of the pores becomes noticeable
when their separation starts to be comparable to the bulk
mean free path. Since heat in the alloys is carried by a very
small range of phonon frequencies, with very long mean
free paths, rather large pores are already able to block a
large fraction of that heat. For nonalloys, heat is carried in a
larger frequency range, so even if the pores can block the
long MFP phonons, there is a non-negligible amount of
shorter MFP phonons which still requires smaller pores in
order to be affected. (A similar behavior has been identified
in the case of nanodots embedded into a matrix [16].)

For each value of the mean free path �, Fig. 3(d) shows
the contribution to the bulk thermal conductivity of all
phonons having MFP<�. For SiGe most of the heat is
carried by phonons withMFP> 10 �m. In contrast, in Si a
significant fraction of the heat is carried by phonons with
shorter intrinsic MFP, which are less affected by the pores.
Figure 3(a) shows �=�0 for a small porosity of 1%. For
large pores the macropore limit 1� � is retrieved. Size
effects are more appreciable for SiGe than for Si, consis-
tently with our previous discussion.

It is experimentally known that phonon scattering with
pores or cavities can mask interphonon scattering, thus
rendering the effective thermal conductivity nearly inde-
pendent of temperature [18,19]. Our calculation also yields
this effect, as shown in Fig. 3(c). As expected, the effect is
more pronounced for smaller pore sizes. SiGe is more
strongly affected than Si at comparable pore sizes, for
the reasons explained in the previous paragraph.

The remarkable differences just described between the
thermal conductivities of alloy and nonalloy nanoporous
materials imply that nanoporous alloys may be very advan-
tageous for certain applications. For example, nanoporous
materials have been proposed as potentially interesting
thermoelectrics [6,20]. Difficulty to produce nanosized
pores may however be an obstacle for their synthesis.
Furthermore, the pore surfaces might in some cases act
as charge traps and considerably decrease electron mobil-
ity [21]. Using a porous alloy instead would allow us to
take advantage of the thermal conductivity reduction at
much larger pore sizes. Thus, they would be easier to
synthesize, and additionally their surface to volume ratio
would be smaller than in the nonalloy case, minimizing the
problem of electron scattering by surface charges.

In sum, via a MC simulation we have accurately eval-
uated the phonon MFP’s of parallel nanoporous materials.
We have found that a previously used cylindrical geometry
approximation yields an inadequate description of the
actual mean free paths in the real system. The behavior
of the MFP with pore size and porosity can be understood
as a combination of a wire and film behavior, and a suitable
interpolation formula has been provided that accounts well

for all the MC results. For small pores, calculation of the
thermal conductivity using the correct MFP’s yields results
considerably lower than those predicted in earlier publica-
tions. We have then investigated the thermal conductivity
of porous Si, porous Ge, and porous SiGe alloy, obtaining
an important qualitative difference between the alloy and
the nonalloys. The thermal conductivity of the alloy is
strongly affected by pores even at large (1 �m) diameters.
In contrast, the thermal conductivity of Si or Ge is only
affected when the pores are considerably smaller
(<100 nm), due to the rather different competing phonon
scattering mechanisms acting in alloys and nonalloys.
These remarkable differences are highly relevant for ap-
plications targeting thermal conductivity reduction, such as
nanostructured thermoelectric materials, where we have
shown that the use of an alloy is potentially advantageous.
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