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Acquisition of Inertia by a Moving Crack
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We experimentally investigate the dynamics of ““simple” tensile cracks. Within an effectively infinite
medium, a crack’s dynamics perfectly correspond to inertialess behavior predicted by linear elastic
fracture mechanics. Once a crack interacts with waves that it generated at earlier times, this description
breaks down. Cracks then acquire inertia and sluggishly accelerate. Crack inertia increases with crack
speed v and diverges as v approaches its limiting value. We show that these dynamics are in excellent
accord with an equation of motion derived in the limit of an infinite strip [M. Marder, Phys. Rev. Lett. 66,

2484 (1991)].
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The motion of a crack is determined by balancing the
energy that it dissipates with that which is externally
supplied. In an elastic material, this energy is transported
from a system’s boundaries to the tip of a moving crack by
means of the elastic fields that dynamically describe how
stresses are distributed. In materials that are considered
brittle, the transported energy is only dissipated within a
very small region encompassing the crack’s tip [1], called
the process zone.

A crack will propagate when the elastic energy released
by its extension G equals the energy dissipated per unit
crack length T' [2]. Once motion initiates, this energy
balance is maintained dynamically. The classic framework
that describes crack dynamics is called linear elastic frac-
ture mechanics (LEFM). LEFM describes how linear elas-
tic fields evolve in space and time to accommodate this
balance.

The classic equation of motion for a crack (derived via
LEFM) [1], however, is based on a number of key con-
ditions. These include the assumption of an unbounded
medium in which linear elasticity applies everywhere out-
side of the process zone. There is also an implicit assump-
tion that all externally imposed forces can be mapped to
tractions imposed on a crack’s faces. When these condi-
tions are met, the theory has been shown to beautifully
describe both a crack’s motion [3-5] and the form of the
surrounding fields [6,7]. This description was shown to be
valid [5] as long as a crack remains a single entity and does
not undergo either microscopic (‘“‘microbranching’’) [8] or
macroscopic bifurcations. Under these conditions, cracks
are predicted to have no inertia, where we define “inertia”
as the (velocity dependent) coefficient coupling crack ac-
celeration ¥ to a crack’s equation of motion.

In this Letter we describe how a crack behaves when
some of these conditions are either not realized or break
down. When allowed to interact with the (finite) bounda-
ries of the medium, we will show that a crack acquires
inertia. The inertia increases with crack velocity v until
effectively becoming infinite as a crack’s limiting velocity
cg 1s approached. We will also demonstrate that this be-
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havior is in excellent quantitative agreement with an equa-
tion of motion derived in the framework of a crack
propagating in an infinitely long strip [9].

Our experiments were performed using polyacrylamide
gels which are transparent, brittle, incompressible elasto-
mers. In these neo-Hookean materials the dynamics of
rapid cracks are identical to those in more commonly
used materials [10], with the advantage that they can be
slowed by 3 orders of magnitude. As in [7,11], we use gels
composed of 13.8% total monomer and 2.6% bis-
acrylamide cross-linker concentrations. The shear (u =
35.2 £ 1.4 kPa) and Young’s (E = 3u) moduli of these
gels yield respective shear, longitudinal and Rayleigh wave
speeds of ¢cg = 5.9 = 0.15 m/s, ¢; = 11.8 = 0.3 m/s and
cg = 5.5 £0.15 m/s. Typical dimensions of the gels were
(X XY X Z)125 X 2b X 0.2 mm, where X, Y, and Z are,
respectively, the propagation, loading, and thickness direc-
tions with b the system’s half-width.

Experiments were performed as in [7,11] by imposing
uniaxial (mode I) tensile loading via constant displacement
in the vertical (Y) direction. Once a desired stress was
reached, a guillotine was used to immediately initiate
fracture at the sample’s edge at X = 0, at a point ¥ = b,
midway between the vertical boundaries. We varied the
value of b to control the effective conditions of the system.
To model an effectively infinite medium under constant
tensile stress (“‘infinite medium’’) we used 26 = 125 mm
and only considered crack dynamics for times ¢ < 2b/cg.
At these times, shear waves, generated at fracture initiation
and reflected back from the vertical boundaries, could not
interact with the crack tip. An infinitely long strip (“‘infi-
nite strip”’) under conditions of constant displacement was
modeled using 20 <2b <50 mm, where only times
greater than 2b/cg and less than return times from the
far lateral boundary were considered. Crack-tip locations
were measured by a high speed camera set to X XY
resolutions of 1280 X 64 pixels (equivalent to 135.2 X
6.8 mm) for experiments in infinite media, and 1280 X
210 pixels (57.5 X 19 mm) for experiments in infinite
strips. In each type of experiment, successive photographs
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were taken at 7200/2400 frames/s with exposure times of
4.4/3 ws. Multiple exposures were utilized, when needed.
In all of the experiments performed, the microbranching
instability was suppressed (as in [11]) by setting the gel
thickness to 160-220 pum. This enabled single-crack states
to propagate over a wide velocity range, 0.20c; < v <
0.95¢cg. v > 0.9cg were not considered, as they correspond
to oscillating cracks [11].

We now consider a crack in an infinite medium under a
constant tensile stress o, imposed at the system’s vertical
boundaries. As the crack propagates, it generates a moving
elastic field that radiates away from the crack’s tip. As long
as these waves are not reflected back to the crack tip, this
configuration corresponds [8] to a crack propagating
within an effectively infinite medium that is loaded by a
constant stress along its faces. The corresponding energy
release rate G is given by [1]:

1 — 22

G(l’ 'U) = Klz(l’ U)Al(v)r (1)
where v and E are the material’s Poisson ratio and Young’s
modulus, and A;(v) is a universal function of the crack’s
instantaneous speed. The stress intensity factor K;(I, v) =
K, (0w, Dk(v) is the coefficient of the 1//r stress singu-
larity at the crack’s tip. The function K (o, [) incorpo-
rates the loading conditions and instantaneous crack length
[, whereas k(v) is another universal function predicted by
LEFM [1]. For “infinite medium” conditions [12],

K (0w 1) = \/ga'oo VI, and LEFM predicts that

1— 28l

G(lv) = ;0’%0(1 —v/cg). (2)

Once I'(v) is known, Eq. (2) yields the equation of
motion for a single-crack through energy balance
G(l, v) = I'(v). In an infinite system under constant stress
loading conditions, energy balance requires G(/, v) to re-
main finite as [ — oo0. Equation (2) tells us that this balance
is dynamically maintained by the 1 — v/cy factor. Hence
v must always accelerate monotonically to its limiting
velocity cg as a crack lengthens without limit.

We test the equation of motion for these conditions in a
number of experiments in which o, was varied. I'(v) for
this material was independently determined [7] by mea-
suring the (LEFM-predicted) parabolic curvature of the
crack tip as a function of v at ~1 mm scales [13]. The
results of these experiments, presented in Fig. 1, reveal
perfect correspondence with LEFM predictions over an
unprecedented range of wv. Another stringent test of
LEFM predictions is provided in the inset of Fig. 1, where
all of these measurements are shown to collapse onto the
predicted universal function k(v).

The agreement with the Eq. (1) breaks down once the
experimental conditions modeling an infinite system are
invalidated. As we show in Fig. 2, this occurs when the
waves generated by the crack tip upon initiation interact
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FIG. 1 (color online). Measured v as a function of the crack
length [/ (circles) compared to LEFM predictions (solid lines) for
values (top to bottom) of o = 15.7 kPa, 14.9 kPa, 12.4 kPa,
and 10.4 kPa. All measurements are for single cracks propagat-
ing in “‘infinite medium” conditions (2b = 125 mm). (inset)
Comparison of measured k(v) [24] (circles) to the LEFM-
predicted universal function: k(v) = (1 —v/cg)/+J1 — v/
(solid line).

with the crack tip after reflection from the sample’s vertical
boundaries. The sharp break with the predicted equation of
motion typically occurs at 1 ~ 2b/cg. Beyond this point, a
crack increasingly interacts with its own prior ‘“‘history,” as
the reflected elastic waves increasingly affect the energy
flux into the crack tip. When this happens, the LEFM
predictions encapsulated in Eq. (2) certainly fail. It is
unclear whether these complex spatially and temporally
varying loading conditions can even be incorporated into
the framework leading to Eq. (1).

Once t significantly exceeds 2b/cg, v approaches
steady-state values that can be significantly lower than
Cg, as Fig. 3(a) demonstrates. How can a steady-state value
of v < ¢y be understood? For [ >> b we approach the limit
of an infinite strip loaded with a finite amount of elastic
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FIG. 2 (color online). Comparison of the measured crack
velocity in a sample of dimensions 120 X 30 X 0.2 mm (circles)
to the LEFM approximation for an infinite medium (solid line).
The sharp divergence occurs at ¢ ~ 2b/c,, when the returned
waves from the vertical boundaries interact with the crack tip.
Here, o, = 12.2 kPa.
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FIG. 3 (color online). (a) Typical crack velocity measurements
in a strip geometry 120 X 30 X 0.2 mm. Note that each experi-
ment approaches a different final velocity vg,, as the energy
density W stored in the strip is changed (legend). (b) Fracture
energy I'(v), calculated via I'(vg,,) = W (squares) compared to
values of I'(v) measured by means of crack-tip curvature [7]
(circles). Careful analysis of crack dynamics in a strip will show
(Fig. 4) that the large increase in I is spurious.

energy per unit area W. In this limit, the system is trans-
lationally invariant for a crack moving at a constant v, as
the energy W released at [ — oo is precisely compensated
by the amount dissipated, I'(v). Hence, in this limit a crack
should reach a steady-state velocity determined by the
energy balance condition: W = I'(v). This argument is
independent of any of the details of the system, on the
condition that v reaches a steady state. This configuration
has been successfully used to measure I'(v) in a number of
different materials [14-16].

In Fig. 3(b) we compare the values of I'(v) measured via
crack-tip curvature of dynamic cracks [7] with those ob-
tained in the strip geometry for cracks propagating at
approximate steady-state velocities. W, in each strip ex-
periment, was measured by integrating the stress-strain
curve prior to crack initiation. For 0.20 < v < 0.85¢y we
see that the two measurements are in very good quantita-
tive agreement. Figure 3(b), however, shows that, for v —
cg, the apparent values of I'(v) obtained in the strip mea-
surements appear to diverge.

This divergence of I'(v) is not real. The key to under-
standing it lies in the energy balance condition for a strip,
W = I'(v). Whereas I'(v) is a characteristic function of a
given material, the energy density W is wholly governed by
the value of o, applied to the strip. It is, thereby, entirely
possible to “overstretch” the strip so that W > I'(v) for
any crack velocity. Why do we empirically observe nearly
steady-state motion under extremely overstretched condi-
tions? Under these conditions, we find that seemingly
negligible crack acceleration leads to anomalously high
apparent values of I'.

In an infinite medium, when extreme stresses are im-
posed, Eq. (1) compensates for any “excess’ elastic en-
ergy by increasing the amount of kinetic energy (i.e.,
motion) within the medium. This is the physical mecha-
nism that provides a limiting crack velocity. When an
unlimited amount of energy is available in an infinite
medium, LEFM converts all of the imposed elastic energy

to motion, while still retaining energy balance. Is there an
equivalent mechanism when conditions of an infinite strip
are realized?

Marder [9] performed a perturbative derivation of an
equation of motion for a crack in an infinite strip, where the
dimensionless acceleration bv/ c% was assumed to be
small. Under these conditions:

G— W(l - i—;f(v)) ~ w<1 - ’Z—; ﬁ) 3)

In sharp contrast to the assumptions leading to Eq. (1),
this derivation assumes that the crack is always in approxi-
mate equilibrium with its vertical boundaries. When
I'(v) = W, the system can attain any compatible steady-
state velocity v. Once overstressed [i.e., W > I'(v) for all
v] a crack, as in Eq. (1), will accelerate to the same limiting
velocity cg. Here, however, the similarities between Eq. (1)
and (3) end. Whereas a crack in an infinite medium has no
inertia (i.e., no v dependence), Eq. (3) predicts precisely
the opposite effect. A crack’s interaction with its “past,”
via the elastic waves continuously reflected by the vertical
boundaries, imparts it with a v-dependent inertia that, in
fact, diverges as v — cp.

In Fig. 4(a) we perform a quantitative test of the velocity
dependent function f(v) in Eq. (3). The predicted value of
f(v) (given in [17]) was compared to the derived value,
f) =[c}/(bv)](1 — T'(v)/W), for 8 different experi-
ments over a wide range of W (27.8 — 55.5 J/m?) and b
(10-25 mm). The agreement with theory is very good and
further improves when (bv)/c? < 0.01, in accordance with
the perturbative expansion. Surprisingly, the measured val-
ues of f(v) agree well with predictions for (1 — I'/W) ~
O(1), a range well beyond the expected region of validity
of Eq. (3) [9].

In Fig. 4(b) we perform a direct comparison between the
predicted [using Eq. (3)] and measured values of I'(v). The
excellent agreement for all values of v indicates both the
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FIG. 4 (color online). (a) Comparison of f(v) in Eq. (3) as
calculated from [17] (solid line) with the values derived using
f) = c2/(bv)(1 = T'(v)/W) (symbols). Filled symbols indi-
cate measurements where the dimensionless acceleration,
(bv)/c? <0.01. (b) Measured fracture energy I'(v) using
Eq. (3) (squares) compared to I'(v) as measured via crack-tip
curvature [7] (circles). The large corrections to G due to the
dimensionless acceleration in Eq. (3) at high velocities indicate
the effect of large crack inertia.

114301-3



PRL 104, 114301 (2010)

PHYSICAL REVIEW LETTERS

week ending
19 MARCH 2010

validity of Eq. (3) together with the important role that
crack inertia can play at high crack velocities. We note that
crack dynamics in samples which are far from a formal
strip configuration (e.g., Fig. 2), are still well described by
Eq. (3) for t > 2b/cg.

In summary, we have verified, for an unprecedented
range of crack velocities, that the classic equation of
motion of a single crack predicted by LEFM works ex-
tremely well, as long as the loading conditions for which it
was developed are valid. One of the more surprising fea-
tures of this theory is that of an inertialess crack. We have
verified that crack dynamics are indeed inertialess, until the
point where a crack is able to interact with its prior history.
At this stage, crack dynamics sharply change. We then
showed that, in general, when a crack is able to continually
interact with its past, crack inertia has a dominant effect on
dynamics. In this case, we demonstrated that theoretical
predictions [9,17] for crack dynamics in an infinite strip are
in excellent agreement with measurements, even beyond
their formal region of validity. Here, crack inertia was seen
to diverge as v — c. This divergence is akin to the mass
divergence of particles in special relativity as they ap-
proach the speed of light.

Matching steady-state crack velocities to the energy
stored per unit length in a strip, is a common method to
measure the fracture energy [14—16]. When used, there is
always a tacit assumption that the energy balance inherent
in I'(v) = W is valid. This is often true, as in the case
where the microbranches instability causes I'(v) to be a
strongly increasing function of v [14]. On the other hand,
one must exercise care in applying this technique, as in an
overstressed system at high velocities, crack inertia di-
verges and vanishingly small accelerations can still be
quite far from ‘“‘steady-state” propagation.

We have shown that there are two distinct classes of
propagation dynamics for simple (nonbifurcating) cracks,
even when the simplest material constitutive law (linear
elasticity) is assumed. These describe crack dynamics
driven via elastic fields that couple remote loading to a
crack’s tip. Are there other dynamic solutions? Apparently
yes. An entirely new class of supersonic solutions in tensile
fracture are predicted once the elastic energy density is so
large in the vicinity of a crack’s tip, that energy does not
need to be transported from remote locations to satisfy
energy balance [18-20].

Is the emergence of inertia a general consequence of a
crack’s interaction with its past? This is an interesting and
very much open question. Here we looked at an extreme
case, where these interactions are continuously taking
place. A crack can also undergo transient self-interactions
when a crack front impinges on a localized material in-
homogeneity. Such “inertial” memory effects were indeed
observed [21] as “‘ring-downs” of the perturbed crack
fronts that continue long after the inhomogeneity was left

behind. Recent theoretical work [22] further suggests that
such inertial effects could also drive oscillatory instabil-
ities of cracks at high velocities [11,23].
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