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Zero-lag synchronization (ZLS) between chaotic units, which do not have self-feedback or a relay unit

connecting them, is experimentally demonstrated for two mutually coupled chaotic semiconductor lasers.

The mechanism is based on two mutual coupling delay times with certain allowed integer ratios, whereas

for a single mutual delay time ZLS cannot be achieved. This mechanism is also found numerically for

mutually coupled chaotic maps where its stability is analyzed using the Schur-Cohn theorem for the roots

of polynomials. The symmetry of the polynomials allows only specific integer ratios for ZLS. In addition,

we present a general argument for ZLS when several mutual coupling delay times are present.
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The synchronization of chaotic systems is a fundamental
phenomenon in nonlinear dynamics [1]. A set of nonlinear
units, mutually coupled by a function of their internal
variables, can synchronize to a common chaotic trajectory
[2–5]. Chaos synchronization has interesting applications
for secure communications since secret messages can be
transmitted by the chaotic signal [6–9]. The receiving unit
can decode it, but it is difficult, if not impossible, to extract
the message from the irregular signal for an illegal listener.
This phenomenon has been realized with electronic circuits
and chaotic lasers [4–6,8,10–12]. Typically, the transmitted
signal between two units that establishes synchronization
has a time delay [13–17]. For chaotic semiconductor lasers
coupled over a distance greater than about 1 m, the delay
time is larger than most of the internal time scales of the
laser. The synchronization can have various properties, the
chaotic units can synchronize without time shift [zero-lag
synchronization (ZLS)] [18–22], the receiving unit can
predict the trajectory of the sending unit (anticipated syn-
chronization) [23], or the trajectories can be related by a
nonlinear function (generalized synchronization). In par-
ticular, isochronal synchronization, or ZLS, which has
been discussed in both a communications context and
with regards to neural networks, is a counterintuitive phe-
nomenon. Although the transmitted signal is received with
an arbitrary long delay time, the chaotic units synchronize
without time delay. Thus two neurons can synchronize
their irregular spiking events without time shift although
their action potentials are transmitted with a considerable
time delay [24,25].

It is not obvious how to achieve ZLS. Recently it has
been shown that units which are chaotic when the cou-
plings are removed cannot be synchronized when the
coupling delay is much larger than the internal time scales
including the Lyapunov time [26]. Hence, the chaotic
trajectories of the network have to be generated by the
mutual interactions to achieve ZLS. But even in the latter
case it has been reported that two chaotic lasers cannot be

synchronized with only one mutual coupling isochronally
[18,27]. Instead, two lasers coupled by one mutual cou-
pling synchronize with a time lag, so one of the lasers is
lagging behind the other, as shown in [27]. In order to
achieve ZLS, each of the lasers also needs a self-feedback
or the coupling between them has to be via a relay unit or a
third driving unit. In addition, when adding self-feedback,
either the self-feedback delay time has to be carefully
adjusted to equal the coupling delay time or multiple
self-feedback delay times have to be used [28]. In this
Letter we show that it is possible to achieve ZLS of two
chaotic semiconductor lasers without a relay unit or self-
feedbacks. Our experiments demonstrate that ZLS is
achieved when multiple coupling delay times with well-
defined ratios are used. The specific values of the ratio can
be derived from the theory of the roots of polynomials
which gives analytical conditions for ZLS for coupled
Bernoulli maps. When the delay ratios are not equal to
these special values the synchronization is significantly
reduced and even eliminated as measured by the cross
correlation of the temporally unshifted intensity traces of
the two lasers.
The experimental setup is shown in Fig. 1. Two similar

Fabry-Perot semiconductor diode lasers emitting in the
visible range near 656 nm wavelength are coupled bidirec-
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FIG. 1 (color online). Experimental setup: two semiconductor
lasers coupled by two bidirectional couplings with different
optical path lengths. LD, laser diode; PD, photodiode; BS,
beam splitter; ND, neutral density filter; CC, corner cube.
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tionally by two optical paths with different time delays—
one constant at a time delay of �1 ¼ 14:12 ns and one
made variable by using a corner-cube mirror on a computer
controlled precision translation stage. When subjected to
mutual feedback, the lasers display chaotic behavior, con-
sisting of very short and random spiking of the laser
intensity. The two lasers are temperature tuned to operate
at nearly identical wavelengths while their injection cur-
rent to threshold current ratios are maintained nearly equal
at p ¼ I=Ith ¼ 1:2. The coupling strength is controlled by
two neutral density (ND) filters, and a beam splitter near
each laser couples a small portion of the beam into fast
photodetectors, sampled by a digital oscilloscope with 8 bit
resolution and a maximal sampling rate of 40 GHz. We
found it convenient to perform the experiments in a syn-
chronization regime where total laser intensity breakdowns
take place, commonly referred to as the low frequency
fluctuation (LFF) regime [29]. In this regime, intensity
breakdowns of both lasers are observed, and the system
temporarily desynchronizes as shown in Fig. 2, similar to
what has been reported in [30]. In order to avoid these
irregularities, we divide the chaotic waveform into seg-
ments of 10 ns length, calculate the correlation coefficient
for each segment using the cross correlation function, and
calculate the average correlation from half of those seg-
ments having the highest correlation [21].

The Lang-Kobayashi (LK) equations are known to be a
good model of coupled semiconductor lasers [31]. Hence
we have investigated the scenario of Fig. 1 by simulating
the LK model with the parameters of Ref. [21]. In corre-
spondence to our experiments the intensity in the simula-
tions was averaged over 1 ns and the cross correlation was
calculated in windows of 10 ns for 1 �s. Then, as in the
experiment, the highest 50% of the correlation values were
used in calculating the average correlation so as to avoid
the severe correlations drops in the LFFs. In Fig. 3 we
compare the measured and calculated correlation coeffi-
cient of the two lasers for a fixed value of �1 ¼ 10 ns and
varying values of �2. Both delay loops have the same
coupling strength �1 ¼ �2 ¼ 50 ns�1. The agreement be-
tween simulation and experimental results is reasonable.
Representative data, showing 10 ns long chaotic trajecto-
ries for both lasers at different �2=�1 ratios, are presented

in Fig. 4. The figure clearly demonstrates ZLS for the two
chaotic trajectories at �2=�1 ¼ 2 [4(a)] and the lack of ZLS
at a ratio of �2=�1 ¼ 5

3 [4(d)]. Our experimental and nu-

merical data of Fig. 3 show ZLS for �2 ¼ 2�1. For �2 ¼
3
2 �1 we still get a significant ZLS correlation value of 0.89

in the simulation and 0.77 in the experiment. For ratios of
5
4 ,

4
3 ,

5
2we observe correlation values C> 0:5while for 1, 53 ,

3 the correlation values drop to C< 0:4. Based on these
results we claim that ZLS is not possible if �2=�1 ¼ p=q is
a ratio consisting of relatively prime numbers p, q being
odd. We provide qualitative and even quantitative argu-
ments to sustain our conjecture.
As we already noted, two mutually coupled chaotic

lasers do not synchronize isochronally if coupled by a
single time delay �1. At least two coupling delay times
are needed to achieve ZLS. A simple qualitative argument
gives the necessary conditions for the coupling delay ra-
tios. We assume that in order to synchronize with another
unit at distance �, a chaotic unit At needs information not
only on the time-delayed signal of Bt��i but also on its own

time-delayed state At��i . If we assume that B acts to some

extent like a mirror, the information transmitted by A
returns to itself after time 2�. Thus, if we add an additional
signal with delay 2� both units receive the same informa-
tion after time 2�, namely (with �i ¼ 2�) the signals At�2�

and Bt�2� and they may be able to synchronize. Although
the lasers are not perfect mirrors and the signal is slightly
changed in the interchange between the units, we claim
that the changes are small enough to allow sustained
synchronization. Note that a small change is even desired;
otherwise the trajectory would not be chaotic but periodic.
But of course the more often the signals are exchanged, the
larger are the changes imprinted on the returning signal.
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FIG. 2 (color online). Recording of the time dependent inten-
sities of two zero-lag synchronized lasers (solid lines) and the
calculated cross correlation of the two lasers (black circles).
Notice the desynchronization periods associated with power
dropouts (LFFs).
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FIG. 3 (color online). Cross correlation coefficient for two
chaotic units which are mutually coupled via two time-delayed
couplings with �1 and �2. Dots: Lang-Kobayashi simulation
with �1 ¼ 10 ns and �2 is varied, � ¼ 50 ns�1. Triangles: Ex-
perimental data with same parameters as simulation.
Squares: Data from simulation with Bernoulli units with a ¼
0:45, b ¼ c ¼ 0:3; see Eq. (2). Error bars mark the standard
deviation from several simulations of the Lang-Kobayashi equa-
tions.
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This is the reason why for large ratios like �2 ¼ 20�1 ZLS
is not obtainable. The same argument gives conditions for
which ZLS with more than two delay times is possible (see
below) and it also explains ZLS for configurations with
self-feedback or with a relay unit. Following these argu-
ments, two units without self-feedback attain ZLS when
coupled by three mutual couplings as well, if, e.g., �1 þ
�2 ¼ �3. Indeed our simulations of a Lang-Kobayashi
system with three time delays, e.g., �1 ¼ 30 ns, �2 ¼
50 ns, �3 ¼ 80 ns yield correlation values close to 1.
This is also consistent with the results of [28], where we
found ZLS for multiple self-feedback times �di and mul-

tiple coupling times �cj that obeyed
PNs

i¼1 ni�di þPNm

j¼1 mj�cj with restricted values of mj and ni. Our quali-

tative argument indicates that ZLS with several mutual
coupling delays is a general phenomenon. Hence we
present an analytically solvable model for which the con-
ditions for ZLS are derived from the symmetry of poly-
nomials. We consider two iterated Bernoulli maps
fðxÞ ¼ ð�xÞmod1, which are coupled by two time-delayed
terms analog to the setup of the semiconductor lasers,

xt ¼ ð1� �Þfðxt�1Þ þ ��fðyt��1Þ þ �ð1� �Þfðyt��2Þ;
yt ¼ ð1� �Þfðyt�1Þ þ ��fðxt��1Þ þ �ð1� �Þfðxt��2Þ:

Agreement between the results of this model and the

results of a system with coupled chaotic semiconductor
lasers can be seen in Fig. 3. Obviously, in this model
the synchronized trajectory xt ¼ yt is a solution of
the iteration xt ¼ ð1� �Þfðxt�1Þ þ ��fðxt��1Þ þ �ð1�
�Þfðxt��2Þ, which is chaotic for �> 1. Note that the two

trajectories xt and yt are completely synchronized without
any time shift, although the signal is transmitted with two
time delays �1 and �2.
The stability of this solution is checked by adding a

small perturbation xt ¼ yt þ �t. In the limit of infinitely
small �t one can ignore the jump generated by the sawtooth
shape of fðxÞ, and the perturbations obey the linear equa-
tion

�t ¼ ð1� �Þ��t�1 � ����t��1 � �ð1� �Þ��t��2 : (1)

The ansatz �t ¼ zt gives the polynomial equation (for
�2 > �1)

z�2 � az�2�1 � bz� � c ¼ 0; (2)

with the coefficients a ¼ ð1� �Þ�, b ¼ ����, c ¼
��ð1� �Þ�, and the time difference � ¼ �2 � �1. Note
that to ensure a chaotic trajectory of the system, aþ bþ
c � 1. Whereas the parameters in (1) are chosen so that
aþ bþ c ¼ � � 1, for the general parameters in (2) the
condition aþ bþ c � 1 is kept in simulations for Fig. 3.
ZLS is stable when all roots of the polynomial (1) lie inside
the unit circle of the complex plane. This problem is well
studied in control theory [32], and the Schur-Cohn theorem
[33] allows us to calculate the region of parameters (a; b; c)
where ZLS is stable. Since we want to compare the results
of the Bernoulli system with chaotic lasers, we consider the
case where an isolated unit is not chaotic, a ¼ ð1� �Þ�<
1. Hence, chaos is generated by the mutual couplings. In
fact, for a ¼ 0 we immediately obtain the following gen-
eral results (�2 � �1). Only the ratio �2=�1 ¼ p=q deter-
mines ZLS, where p and q are relatively prime integers.
Consequently, ZLS is stable even in the limit of infinitely
long delay times. Our main result is, if p and q are odd
integers, including a single delay �1 ¼ �2, ZLS is excluded
for any parameters b and c for which the system is chaotic.
To see this, note that the transformation w ¼ �zn for any
positive integer n defines a new polynomial. When all roots
of the z polynomial lie inside the unit circle, then all roots
of the w polynomial lie inside the unit circle as well.
Correspondingly, the same result can be obtained for a �
0 and �i ! 1with �1=�2 being constant. When p and q are
not both odd, the region of coefficients b and c for which
ZLS is stable can be calculated analytically using the
Schur-Cohn theorem [33]. Figure 5 shows the results for
ðp; qÞ ¼ ð2; 1Þ, (3, 2), (4, 3), and (5, 2). Only the regions for
which the system is chaotic are shown (�b� c > 1).
Obviously, the parameter region for ZLS is largest for �2 ¼
2�1, and it shrinks with increasing values of p and q. In
fact, when � ¼ �2 � �1 is finite we can prove that this
parameter region decreases to zero when �2 and �1 diverge
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FIG. 4 (color online). A 10 ns recording of the time dependent
intensity of two semiconductor lasers (thin blue and thick red).
(a) �2=�1 ¼ 2, (b) �2=�1 ¼ 3

2 , (c) �2=�1 ¼ 4
3 , (d) �2=�1 ¼ 5

3 . To

demonstrate the slow decorrelation of the intensities with in-
creasing time we show in panel (a) (dashed line) the intensity of
the laser after a delay of 4�1. Corresponding correlation values
can be seen in Fig. 3.
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to infinity. In agreement with our analytic results, ZLS in
chaotic lasers are most easily found for �2 ¼ 2�1 and less
easily for other ratios as the coupling parameters have to be
chosen more carefully. In addition, the values of the cross
correlation obtained numerically for the Bernoulli system
are similar to the ones from chaotic semiconductor lasers,
as shown in Fig. 3.

For the Bernoulli maps the local Lyapunov exponents
are constant. Therefore the stability of the synchronization
manifold is given by the roots of the polynomial, Eq. (2).
For other maps, the coefficients of the linearized equations
depend on time. We have checked for two logistic maps
whether the predictions derived from Eq. (2) hold for time
dependent coefficients as well. When �2=�1 is a ratio of
two relatively prime odd integers, chaotic ZLS should not
be possible. In fact, e.g., for �2=�1 ¼ 5

3we find ZLS, but the

system generated a periodic trajectory. Chaos is ruled out
by symmetry, and periodic orbits are stabilized, similar to
chaos control [14,34].
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FIG. 5 (color online). ZLS for two units coupled by two time-
delayed couplings (�1; �2). Only the chaotic region is shown.
Region with horizontal lines, �2=�1 ¼ 2; vertical lines, �2=�1 ¼
3=2; diagonal lines, �2=�1 ¼ 5=2.
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