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CNISM, Università di Brescia, Via Branze 38, 25123 Brescia, Italy

Antonio Degasperis
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We demonstrate experimentally the existence of three-wave resonant interaction solitary triplets in

quadratic media. Stable velocity-locked bright-dark-bright spatial solitary triplets, determined by the

balance between the energy exchange rates and the velocity mismatch between the interacting waves, are

excited in a KTP crystal.
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In recent years solitary waves in quadratic materials
have been the subject of an intense renewal of interest
from both theoretical and experimental viewpoints. Two
types of solitary waves that were both predicted in the early
1970’s are being studied. On one hand, one finds solitary
waves that result from a balance between nonlinearity and
diffraction (or dispersion) [1]. This type of solitary wave
has been intensively investigated experimentally over the
past few years [2]. On the other hand, quadratic media were
shown to support solitary waves that result from energy
exchanges between diffractionless (or dispersionless)
waves of different velocities [3–5]. The structure of these
solitary waves is determined by the balance between the
energy exchange rates and the velocity mismatch between
the interacting waves [6,7]. This type of solitary wave is
ubiquitous in nonlinear wave systems [5] and has been
reported in such diverse fields as plasma physics, hydro-
dynamics, acoustics, and nonlinear optics, in particular, in
the context of self-induced transparency [4,8]. This type of
wave has also been investigated experimentally in stimu-
lated Raman scattering in gases [9] and recently in
H2-filled photonic crystal fibers [10], in stimulated
Brillouin fiber-ring lasers [11], but no experiments have
been reported to date on solitary waves of quadratic optical
materials.

In this Letter we report the experimental observation of
diffractionless velocity-locked solitary triplets in a qua-
dratic crystal. We consider the optical spatial noncollinear
scheme with type II second-harmonic generation (SHG) in
a KTP crystal. A spatial narrow diffractionless extraordi-
nary beam (the signal) and an ordinary quasiplane wave
(the pump), both at the fundamental frequency (FF)!, mix

via �ð2Þ to generate a second-harmonic (SH) beam at
frequency 2! (the idler). Depending on the input inten-
sities, three different regimes exist. Linear regime: the FF
signal and pump beams do not interact. Frequency conver-

sion: the FF signal and pump beams interact and generate a
SH idler whose spatial characteristics are associated with
the interaction distance in the crystal; signal and pump are
depleted. Solitary regime: the FF signal and pump beams
interact, generate a spatial narrow SH idler, a spatial dip
appears in the pump, whereas the intensity and propagation
direction of the signal beam are modified. Indeed, the
interaction generates a stable bright-dark-bright triplet
moving with a locked spatial nonlinear velocity [7].
In the experiments (see Fig. 1), a Q-switched, mode-

locked Nd:YAG laser delivers 40 ps pulses at � ¼
1064 nm. We introduce a Glan polarizer to obtain, after
passage of the light through P1, two independent beams
with perpendicular linear polarization states. A half-wave
plate placed before the prism serves to adjust the intensity
of the two beams. By means of highly reflecting mirrors,
beam splitters and lenses, the beams are focused and
spatially superimposed in the plane of their beam waist
with a circular shape of 200 �m and 2.2 mm, full width at
half maximum in intensity, for the signal and pump waves,
respectively. A L ¼ 3 cm long type II KTP crystal cut for
second-harmonic generation is positioned such that its
input face corresponds to the plane of superposition of

FIG. 1 (color online). Experimental setup. M1, M2, M3, M4:
mirrors. P1: polarizer. L1, L2: lenses.
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the two input beams. The crystal is oriented for perfect
phase matching. The directions of the linear polarization
state of the two beams are adjusted to coincide with the
extraordinary and the ordinary axes, respectively, of the
KTP crystal. The wave vectors of the input beams are tilted
at angles of �s ¼ 2:1� and �p ¼ �2:1� (in the crystal)

with respect to the direction of perfect collinear phase
matching for the extraordinary and the ordinary compo-
nents, respectively (see Fig. 2). These parameters corre-
spond inside the crystal to a tilt between the input beams
greater than the natural walk-off angle but introduced
along the ordinary noncritical plane. The idler second-
harmonic direction lies in between the input beams direc-
tions (�i ffi 0:4�). With these values of parameters, spatial
diffraction and temporal dispersion were negligible. The
spatial waves’ patterns at the output of the crystal are
imaged with magnification onto a CCD camera and ana-
lyzed. We use alternately different filters and polarizers to
select either the IR or the green output.

Theoretically, the equations describing the spatial qua-
dratic resonant interaction of three waves in the quadratic
nonlinear medium read as:
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Ejðx; y; zÞ are the slowly varying electric field envelopes of
the waves at frequencies!j (wavelength �j), kj ¼ !jnj=c

are the wave numbers, nj the refractive indexes, �j ¼
2d!j=cnj the nonlinear coupling coefficients (d is the

quadratic nonlinear susceptibility and c is the speed of
light), �j the walk-off angles and j ¼ s, p, i (s:signal,

p:pump, i:idler). z is the spatial longitudinal propagation
coordinate, x and y are the spatial transverse coordinates.
In the configuration we considered �p < �i < �s, spatial

diffraction is negligible; therefore, Eqs. (1) reduce to the
integrable three-wave model reported in Ref. [7], and in the
ordinary x-z plane (y ¼ 0 plane) bright-dark-bright triplets

that travel with a common nonlinear locked velocity can be
excited. Typical envelope profiles of the bright-dark-bright
solitary waves of Eqs. (1) versus x for fixed z and y are
shown in Fig. 3.
As the intensities of the input signal and pump are varied

in a suitable range, we observed three different regimes in
the ordinary KTP x-z (y ¼ 0) plane: linear, frequency
conversion, and solitary regimes.
In the low-intensity linear regime (Is ¼ 0:1 MW=cm2,

Ip ¼ 0:01 MW=cm2), the signal and the pump do not

interact and propagate without diffraction in the KTP
crystal following their own characteristic spatial directions
(Fig. 4). Left column of Fig. 4 shows the numerical spatial
evolution of the extraordinary polarized signal and the
ordinary polarized pump in the ordinary x-z (y ¼ 0) plane;
central and right columns report, respectively, the numeri-
cal and experimental spatial output profiles of the beams in
the x-y (z ¼ L) plane. The numerical and experimental
results are reported considering a spatial frame moving
with the pump walk-off angle. No SH extraordinary polar-
ized idler is generated.
At moderate input intensities (Is ¼ 10 MW=cm2, Ip ¼

0:03 MW=cm2), the signal interacts with the pump and an
idler beam at the second harmonic is generated (Fig. 5).
This regime corresponds to the well-known optical non-
collinear second-harmonic frequency conversion. As
shown in the left column of Fig. 5, the signal beam and
the pump beam propagate with their own spatial velocities
(walk-off angles); as long as the signal beam overtakes the
pump beam, a SH idler beam is generated which propa-
gates with its own characteristic spatial linear velocity; the
spatial width of the SH idler is associated with the FF
beams’ interaction distance in the crystal. Signal and
pump beams are deeply depleted. Central and right col-
umns of Fig. 5 report, respectively, the numerical and the
experimental spatial output profiles of the beams in the x-y
(z ¼ L) plane. Indeed, central and right columns of Fig. 5
report the existence of both the linear and the frequency
conversion regimes. In the planes parallel to the x-z (y ¼
0) plane, low-intensity tails of the signal, along the y
coordinate, lead to linear beam-dynamics along the x

FIG. 2. Schematic representation the optical noncollinear con-
figuration in the KTP crystal.

−2 −1 0 1 2
0

5

10

15

x (mm)

A
m

pl
itu

de
s 

[M
V

/m
] E

signal

E
pump

E
idler

FIG. 3 (color online). Envelopes Es, Ep and Ei of the solitary
triplet.

PRL 104, 113902 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 MARCH 2010

113902-2



dimension (as in the y ¼ 1 plane), while moderate-
intensity levels of the signal, along the y coordinate, lead
to frequency conversion regime along the x dimension (as
in the y ¼ 0 plane).

At high input intensities (Is ¼ 50 MW=cm2, Ip ¼
0:1 MW=cm2), the scenario changes dramatically
(Fig. 6). As shown in the left column of Fig. 6 the interac-
tion of the signal and pump beams leads to the generation
of a narrow SH beam. Additionally, a narrow dip appears in
the quasiplane wave pump; the intensity, width and spatial
direction of the signal are slightly modified [12]. The
signal-pump interaction generates a stable bright-dark-
bright solitary triplet moving with a locked spatial non-
linear velocity (nonlinear walk-off angle) that lies in be-
tween the characteristic spatial linear velocities of the

signal and the idler [7,13]. The solitary wave results from
energy exchanges between diffractionless waves of differ-
ent spatial velocities.
Central and right columns of Fig. 6 report, respectively,

the numerical and the experimental spatial output profiles
of the beams in the x-y (z ¼ L) plane. Again, central and
right columns of Fig. 6 report the existence of the linear
regime, the frequency conversion regime and the solitary
regime. In the planes parallel to the x-z (y ¼ 0) plane, low-
intensity tails of the signal, along the y coordinate, lead to
linear beam dynamics along the x dimension (as in the y ¼
1 plane); moderate-intensity levels of the signal, along the
y coordinate, lead to frequency conversion regime along
the x dimension (as in the y ¼ 0:2 plane); while high-
intensity peaks of the signal, along the y coordinate, lead
to solitary regime along the x dimension (as in the y ¼ 0
plane). An effective way to observe the spatial shift of the
directions of the waves between moderate and high-
intensity levels is to look at the experimental and numerical
spatial output profile of the generated Ei component in
Fig. 6. In fact, we note a horseshoe-shape of the Ei com-
ponent. The lateral sides of the horseshoe represent Ei

waves generated by moderate-intensity levels of Es; the
generated Ei waves move with the linear walk-off angle �i.
The central portions of the horseshoe represent Ei waves
generated by high-intensity levels of Es; the Ei waves
move with nonlinear walk-off angles within the range
[�i, �s]. The nonlinear walk-off increases approaching
the center.
By increasing or decreasing the signal and/or pump

intensities we can observe that the stable solitary triplet
with different nonlinear spatial velocity, width and energy
distributions may be excited.

x (mm)

z 
(m

m
)

−2 0 2
0

10

20

30
E

s

x (mm)

y 
(m

m
)

−2 0 2
−2

0

2
E

s

x (mm)

y 
(m

m
)

−2 0 2
−2

0

2
E

s

x (mm)

z 
(m

m
)

−2 0 2
0

10

20

30
E

p

x (mm)

y 
(m

m
)

−2 0 2
−2

0

2
E

p

x (mm)

y 
(m

m
)

−2 0 2
−2

0

2
E

p

FIG. 4 (color online). Linear regime. Left column, numerical
dynamics of the beams Es, Ep in the x-z (y ¼ 0) plane. Central

column, numerical, and right column, experimental results at the
exit face of the KTP crystal presenting the spatial x-y output
profiles of the beams. At the input Is ¼ 0:1 MW=cm2, Ip ¼
0:01 MW=cm2.
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FIG. 6 (color online). Solitary regime. Left column, numerical
dynamics of the beams Es, Ep, Ei in the x-z (y ¼ 0) plane.

Central column, numerical, and right column, experimental
results at the exit face of the KTP crystal presenting the spatial
x-y output profiles of the beams. At the input Is ¼ 50 MW=cm2,
Ip ¼ 0:1 MW=cm2.
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FIG. 5 (color online). Frequency conversion. Left column,
numerical dynamics of the beams Es, Ep, Ei in the x-z (y ¼
0) plane. Central column, numerical, and right column, experi-
mental results at the exit face of the KTP crystal presenting the
spatial x-y output profiles of the beams. At the input Is ¼
10 MW=cm2, Ip ¼ 0:03 MW=cm2.
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Note that the case reported in this Letter is completely
different from the quadratic walking solitons already dis-
cussed in the literature in the presence of non-negligible
diffraction [14,15]. In the same way, our triplets are com-
pletely different from Manakov-type vector solitons
[16,17], where a cubic nonlinearity balances diffraction.

In summary, we have shown the existence of optical
solitary waves sustained by phase-matched nondegenerate
three-wave parametric interaction in a quadratic KTP me-
dium. These solitary waves, predicted in the 1970’s, are
stable velocity-locked bright-dark-bright spatial triplets,
determined by the balance between the energy exchange
rates and the velocity mismatch between the interacting
waves. It is interesting to notice that the three-wave solitary
triplet concept may be applied to describe the interaction
between either three beams in the spatial domain (diffrac-
tionless solitary waves) or three optical pulses in the time
domain (dispersionless solitary waves).

The present research in Brescia is supported by the
MIUR project PRIN 2007–CT355C.
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