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We study an optoelectronic time-delay oscillator that displays high-speed chaotic behavior with a flat,

broad power spectrum. The chaotic state coexists with a linearly stable fixed point, which, when subjected

to a finite-amplitude perturbation, loses stability initially via a periodic train of ultrafast pulses. We derive

approximate mappings that do an excellent job of capturing the observed instability. The oscillator

provides a simple device for fundamental studies of time-delay dynamical systems and can be used as a

building block for ultrawide-band sensor networks.
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A deterministically chaotic system displays extreme
sensitivity to initial conditions and the spectra of the fluc-
tuating system variables are broadband. Yet, for typical
chaotic devices, the power spectra often contain several
sharp features that stand out above a broad background,
which are often associated with weakly unstable periodic
orbits that are part of the backbone of the strange attractor.
The fact that the power spectra for typical chaotic devices
are not featureless limits their application in ultrawide-
band sensor networks [1] and in chaos-based ranging de-
vices [2], for example.

In this Letter, we describe an optoelectronic time-delay
oscillator that displays high-speed chaos with an essen-
tially featureless power spectrum. The chaotic behavior
coexists with a linearly stable quiescent state. If the system
starts in this state, a finite-size perturbation is needed to
force the system to the chaotic state, causing the produc-
tion of an initially periodic train of ultrafast pulses whose
spacing and amplitude become irregular. Our observations
are in good agreement with the predictions of a nonlinear
stability analysis of the fixed point.

Our work has important implications for understanding
the stability of general time-delay systems, for which
coexisting states are common. For example, the stability
and noise sensitivity of optoelectronic microwave oscilla-
tors [3], synchronized neuronal networks [4], synthetic
gene networks [5], and controlled chaotic systems [6,7]
may be adversely affected by the presence of a coexisting
chaotic state. Our analysis predicts the amplitude of noise
or externally applied perturbations that allow such systems
to ‘‘sense’’ the coexisting strange attractor.

Our optoelectronic oscillator consists of a nonlinear
element placed in a time-delay feedback loop and displays
a variety of dynamical behaviors. As shown in Fig. 1, the
beam generated by a semiconductor laser (wavelength
1:55 �m) is injected into a single-mode optical fiber,
passes through a polarization controller, and is injected
into a Mach-Zehnder modulator (MZM). The transmission
of the MZM is a nonlinear function of the applied voltage,
where we independently apply a time-dependent voltage to

the radio frequency (rf) port of the device (half wave
voltage V�;rf ¼ 7:4 V) and a dc- voltage VB to bias it at

any point on the transmission curve (half wave voltage
V�;dc ¼ 7:7 V). Light exiting the modulator passes through

an additional piece of single-mode fiber (length �5 m)
serving as a delay line and is incident on a photodetector.
Half of the resulting signal, denoted by V, is amplified by
an inverting modulator driver (gain gMD ¼ �22:6) and fed
back to the MZM via the ac-coupled input port. The
modulator driver saturates at high voltage with saturation
voltage Vsat ¼ 9:7 V. The other half of the signal is di-
rected to a high-speed oscilloscope (8 GHz analog band-
width, 40 gigasamples=s sampling rate). The total delay of
the feedback loop T ¼ 24:1 ns.
Similar optoelectronic oscillators have been studied pre-

viously, dating back to the seminal work of Ikeda [8]. One
distinguishing feature of our device is that the amplifier is
bandpass coupled so that feedback of low and high fre-
quencies is suppressed. We find that the linear fre-
quency response of the various components of the system
is well described by a two-pole bandpass filter with a low-
(high-)frequency cutoff !� ¼ 1:5� 105 s�1 (!þ ¼
7:5� 1010 s�1), center frequency!0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!�!þ
p ¼ 1:1�

108 s�1, and bandwidth� ¼ !þ �!� ¼ 7:5� 1010 s�1.
The system is thus described by two coupled time-delay

FIG. 1. Experimental setup. Inset: Nonlinear transmission of
the MZM (ratio of the output to input powers of the device) as a
function of the dimensionless bias voltage m.
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differential equations as opposed to a single time-delay
differential equation used by Ikeda. Such coupled equa-
tions display unique bifurcation properties [9,10] and new
behaviors, such as chaotic breathers [11].

Another important distinction of our work is that we bias
the MZM at the maximum of the transmission curve (m ¼
�VB=2V�;dc ¼ 0) shown in the inset of Fig. 1, which

renders the quiescent state of the system linearly stable.
Essentially all other research has focused on the case where
the bias is set to the half-transmission point of the trans-
mission curve (m ¼ �=4), where the quiescent state is
most linearly unstable. Counter examples exist, such as
the work of Meucci et al. [12], although they did not focus
on the behavior discussed here.

The dynamics of our optoelectronic oscillator is de-
scribed by the dimensionless coupled time-delay differen-
tial equations (DDEs) [10,11]

_xðsÞ ¼ �xðsÞ � yðsÞ þ c½xðs� �Þ�; (1)

_yðsÞ ¼ �xðsÞ: (2)

Here, c½x� ¼ �cos2ðmþ d tanhxÞ � �cos2m is the nonlin-
ear delayed-feedback term, x ¼ gMDV=Vsat, the overdot
denotes the derivative with respect to the dimensionless
time s ¼ t�, � is the feedback loop gain, proportional to
the laser power, � ¼ T�, and � ¼ !2

0=�
2 characterizes the

bandpass filter. Differing from Ref. [11], we include a
hyperbolic tangent function in c½x� to account for am-
plifier saturation, characterized by the parameter d ¼
�Vsat=2V�;rf . In our experiments, three parameters are

held fixed (d ¼ 2:1, � ¼ 1820, and � ¼ 2:0� 10�6),
while � can range from 0–5 by adjusting the laser power
with an attenuator and m ranges from ��=2 to �=2. For
future reference, note that x and V have opposite signs
because gMD < 0.

We first investigate the linear stability of one of the fixed
points of Eqs. (1) and (2) located at ðx�; y�Þ ¼ ð0; 0Þ, which
is the quiescent state of the oscillator. Linear stability
analysis predicts that the fixed point is stable for small �
and undergoes a Hopf bifurcation (a transition to an oscil-
latory behavior) at

�H ¼ � b�
d sinð2mÞ ; (3)

where b� is a constant that depends on � and � and is
�� 1 for our conditions. Clearly, the fixed point is line-
arly stable for all � for m ¼ 0 where �H diverges.

Experimentally, we find that the stability properties of
the fixed point are much more complex than predicted by
the linear analysis presented above. In particular, nearm ¼
0, we find that finite-size perturbations destabilize the fixed
point for � < �H, which can only be understood from a
global (nonlinear) stability analysis of the model.

In the experiments, we slowly increase � from zero until
the fixed point ðx�; y�Þ ¼ ð0; 0Þ is destabilized. It is seen in
Fig. 2(a) that there is very good agreement between the

predictions of the linear theory and experiment around
m ¼ ��=4 (the standard bias used in most previous ex-
periments), but there is substantial disagreement in the
vicinity of m ¼ 0 [see Fig. 2(b)]. At m ¼ 0, the system
loses stability by transitioning directly to a broadband
chaotic state at � ¼ 4:36, undergoing transient pulsations
en route to chaos. The finite-size perturbations needed to
destabilize the fixed point originate from noise in our
system (e.g., laser relaxation oscillations, and detector
dark and shot noise).
We add more noise to the system to measure its effect on

the instability threshold. Using an erbium-doped fiber am-
plifier (EDFA) and an attenuator so that the total optical
power injected into the oscillator is the same, we observe
that the root-mean-square noise in V increases by a factor
of 2.3 over a bandwidth from dc to 8 GHz. The open
diamonds in Fig. 2 show that the instability threshold
decreases for jmj< 0:1 due to the increased noise. There
is also a pronounced asymmetry in the instability threshold
about m ¼ 0.
In the vicinity of m ¼ 0, we observe that the system

loses stability by generating a sequence of ultrashort pulses
spaced initially by T with a pulse duration (full width at
half maximum) of �200 ps. Typical transient behavior is
shown in Fig. 3(a), where we have removed the EDFA from
the setup and adjust � just above the instability threshold.
To more carefully study this transient behavior, we add an
additional 3-dB power splitter to the feedback loop, lower
� so that the system is in the quiescent state, and inject
200-ps-long electrical pulses into the loop. For small pulse
amplitude, the perturbation decays. For sufficiently large
pulse amplitude, we observe that the perturbation grows
rapidly initially, levels off, and the waveform becomes
more complex, similar to that shown in Fig. 3(a). The
open triangles shown in Fig. 3(b) give the critical value
of the pulse amplitude needed to destabilize the fixed point
as a function of �.
The instability boundaries shown in Fig. 2 and the

transient pulsing behavior shown in Fig. 3 can be under-
stood by asymptotic analysis of Eqs. (1) and (2). Consider a
finite-size perturbation to x in the form of a short pulse of
amplitude �x0 centered at time s ¼ 0. Because of the

FIG. 2. Observed values of � for which the system transitions
from steady state to oscillatory or pulsing behavior as a function
of m, with �H superimposed (solid line). The squares in (a) and
(b) indicate low experimental noise, while the diamonds in (b)
indicate a higher level of noise.
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smallness of �� 10�6, y responds extremely slowly to this
perturbation, and hence we set y ¼ 0. The perturbation
propagates through the feedback loop and, near time �,
the feedback term begins to grow from zero, corresponding
to the presence of the pulse a time � earlier. Approximately,
this produces another pulse c½x0� in x. Thus, this second
pulse at time �will generate a third pulse at time 2�, and so
on, consistent with the behavior shown in Fig. 3(a).

From the asymptotic analysis, we derive a one-
dimensional discrete map of the form

xnþ1 ¼ c½xn�; (4)

where xn can be thought of as the amplitude of a pulse at
time n�. Further analysis reveals that there exists a con-
tinuous mapping of a time interval of length � into the next
future interval of length �. It is given by

xs;sþ� ¼ c½xs��;s�; (5)

where xa;b denotes the temporal evolution of x over the

interval ða; b�. One should keep in mind, however, that
these mappings only approximately predict the dynamics
of the physical system, as reducing the coupled DDEs to a
mapping erases all of the effects of the bandpass filter.

The steady states and the periodic solutions of the DDE
correspond to fixed points of the discrete map (4), where
the number of these fixed points depends on the values of
�, m, and d. Here, we focus on the case of m ¼ 0, where
there are one or three fixed points for d ¼ 2:1. We find that
the fixed point x�s1 ¼ 0 is always stable. It corresponds to

the quiescent state where no pulses are generated. The
other two fixed points emerge at a critical feedback gain
�c ¼ 0:73, exist for � > �c, and are both negative. The
fixed point with the greater magnitude, denoted by x�s2, is
stable, and corresponds to a periodic pulsating state with
amplitude x�s2, while the fixed point with the smaller mag-

nitude, denoted by x�u, is unstable, and forms a separatrix
between the two stable fixed points x�s1 (quiescent state)

and x�s2 (pulsating state). Thus, the critical perturbation size
is given by jx�uj because perturbation amplitudes greater
than this value will grow in time towards x�s2. For � > 1,

where jx�uj � 1, a very good approximation is given by
x�u � �1=ð�d2Þ.
We determine x�u numerically from map (4) and convert

to physical units [see Fig. 3(b)]. We also determine x�u from
a numerical simulation of Eqs. (1) and (2). It is seen that
the agreement between the experiments, and predictions of
the mapping and simulations, are very good. Most impor-
tantly, it is seen that the minimum perturbation size de-
creased as a function of �, implying that noise will
eventually destabilize the fixed point for sufficiently large
�. A similar procedure can be used to determine the
threshold gain �th required to destabilize the quiescent

state x�s1 ¼ 0 for a given noise intensity D ¼ ffiffiffiffiffiffiffiffiffiffiffi
2hx2ip

. At

threshold, hx2i ¼ jx�uj2, which yields �th ’
1=½d sinðDd=

ffiffiffi
2

p � 2mÞ�.
For the whole range of m, �c continues to indicate the

birth of two fixed points (stable pulsating state and unstable
state), which we determine numerically from map (4) and
display in Fig. 4(a). Pulsing behavior is possible for � > �c

(see inset). There is a strong asymmetry in �c aboutm ¼ 0,
indicating that pulsing behavior is least likely around m ¼
�=4. Also shown in Fig. 4(a) are �H (Hopf) and �th (noise
threshold) for one value of the noise intensity. For �th <
�H (���=4<m & 0:1), we predict that the quiescent
state x�s1 ¼ 0 tends to be destabilized by a pulsing insta-

bility. For �H < �th, �� �H, and small noise, we predict
that x�s1 tends to be destabilized by the Hopf bifurcation.

Thus, we predict that x�s1 will be unstable for � >
min½�H; �th�. We see that there is qualitative agreement
between min½�H; �th�, highlighted in Fig. 4(a) by the thick
red line, and the high-noise experimental measurements
[Fig. 2(b)].
Analysis of the map only gives information about the

pulse peak amplitude; information about changes in the
pulse shape is predicted by the continuous mapping (5). In
particular, we take the initial perturbation to be a Gaussian
pulse centered at s ¼ 0, shown in Fig. 4(b). For m ¼ 0, we
find that the pulse remains symmetric and undergoes sub-
stantial pulse compression after one round-trip through the
loop (inner dashed curve). This pulse compression contin-
ues each iterate through the loop, eventually, becoming so

FIG. 3. (a) Experimentally observed transient behavior that
results for m ¼ 0 and � ¼ 4:36 when the system leaves the
steady state. The pulses have a FWHM �0:2 ns and are sepa-
rated by the time delay T. (b) The critical pulse amplitude as a
function of � in the experiment (triangles) and simulation (stars)
with the unstable fixed point of the map (x�u) superimposed as a
solid curve.

FIG. 4 (color online). (a) Instability thresholds usingD ¼ 0:28
in �th. The inset shows stable (solid line) and unstable (dashed
line) fixed points versus � form ¼ �0:2. (b) Temporal evolution
of an initial Gaussian pulse (solid line) after one iteration of the
continuous mapping for m ¼ 0 with � ¼ 1:23 and x0 ¼ �0:2
(inner dashed line) and for m ¼ �=4 with � ¼ 0:71 and x0 ¼
�0:35 (outer dashed line).
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short that our asymptotic analysis breaks down when the
pulse spectrum exceeds the bandpass filter width. Thus, we
predict that perturbations tend to produce ultrafast pulses
whose spectrum fills the available device bandwidth.
Strong frequency mixing, known to occur in time-delay
systems, then gives rise to pulse-to-pulse coupling and
chaos [13]. For m ¼ �=4, the pulse also remains symmet-
ric, but the pulse width expands in a round-trip through the
loop. Thus, short-pulse perturbations tend to smooth out
and the system will tend to display more sinusoidal behav-
ior near the instability threshold. For other values ofm, the
pulses become asymmetric and pulse compression (expan-
sion) occurs when �c < �H (�H < �c).

In the experiment, we observe that, in general, transient
behavior similar to that in Fig. 3(a) eventually gives way to
chaotic behavior such as the one shown in Fig. 5(a) for the
case m ¼ 0 and � ¼ 4:80, which is just above the noise-
induced threshold seen in Fig. 2. Figure 5(b) shows the
one-sided power spectral density (PSD) of the experimen-
tal chaotic time series with a resolution bandwidth of
8 MHz. Interestingly, the power spectrum is essentially
‘‘featureless’’—flat up to the cutoff frequency of the oscil-
loscope used to measure the dynamics (8 GHz). In greater
detail, the spectrum is contained with a range of 15 dB with
a standard deviation of 3 dB for frequencies below 8 GHz.
Our observation is consistent with our analysis of the
continuous map above, and indicates that all frequencies
contribute with approximately equal strength and that there
are no weakly unstable periodic orbits embedded in the
strange attractor. This behavior contrasts with most other
chaotic systems where numerous large peaks appear in the
power spectrum.

We compare our results to the case where � ¼ 4:30,
which is just below the threshold for noise-induced insta-

bility. As seen in Fig. 5(b), the power spectral density is at
least 40 dB below that observed when the oscillator is in
the broadband chaotic state and is consistent with the noise
floor of the overall system. Furthermore, the noise floor is
contained within a range of 18 dB with a standard deviation
of 2 dB, indicating that the chaotic spectrum is nearly as
featureless as the spectrum of the system noise. Also, once
the system exhibits broadband chaos at m ¼ 0 for suffi-
ciently high gain, the dynamics are not sensitive to chang-
ing the bias point by 1 V either way. Figures 5(c) and 5(d)
show similar broadband behavior of the numerical solution
of Eqs. (1) and (2), which has a positive largest Lyapunov
exponent of �0:03 ns�1 and is therefore chaotic. The
inverse of our estimated Lyapunov exponent is consistent
with the transient time scale for the pulsing behavior
shown in Fig. 3(a).
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FIG. 5. The experimental time series (a) and power spectral
density (b) of the broadband chaotic behavior in the physical
system for m ¼ 0 and � ¼ 4:80 (upper trace). The power
spectral density of the noise floor obtained for m ¼ 0 and � ¼
4:30 (lower trace) is also shown. Numerical time series (c) and
power spectral density (d) for m ¼ 0 and � ¼ 4:80.
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