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We investigate the steady states of a lossy array of nonlinear optical resonators that are driven by lasers

and interact via mutual photon tunneling. For weak nonlinearities, we find two-mode squeezing of

polaritons in modes whose quasimomenta match the relative phases of the laser drives. For strong

nonlinearities the spatial polariton density-density correlations indicate that the polaritons crystallize and

are predominantly found at a specific distance from each other despite being injected by a coherent light

source and damped by the environment.
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Introduction.—Interacting quantum many-body systems
[1] give rise to fascinating phenomena such as quantum
phase transitions, quantum magnetism, or charge fraction-
alization. Of particular interest is the strongly correlated
regime, where collective phenomena are most pronounced.
In most cases, strongly correlated quantum many-body
systems are studied in scenarios of thermodynamic
equilibrium, that permit a description with statistical tech-
niques, and substantial understanding of, e.g., equilibrium
quantum phase transitions [2], has been achieved. On the
other hand, a lot less is known about nonequilibrium
regimes where the balance between loading and loss
mechanisms leads to the emergence of station-
ary states. Here we investigate collective phenomena in
nonequilibrium steady states of lossy arrays of coupled
nonlinear optical resonators that are coherently driven by
lasers.

Strongly interacting polaritons [3,4] and photons in
coupled arrays of microcavities [5] and optical fibers
[6,7] have recently been shown to be suitable candidates
for realizing a strongly correlated many-body regime with
current technology [8,9]. So far, possibilities to observe
equilibrium phenomena, such as a Mott insulator [3,5] or a
Tonks-Girardeau gas [6,7], have mostly been addressed.
These regimes have, however, been realized previously,
e.g., with ultracold atoms [1]. In contrast, we here predict
a phenomenon for polaritons, for which no analogue in
other implementations is known so far.

Experiments to generate quantum states with pho-
tons, either in cavity QED [8] or with optical fibers [9],
typically work in nonequilibrium situations and it is
therefore much more natural and feasible to consider
driven dissipative scenarios. First steps in this direc-
tion have been undertaken with studies of an optical
Josephson effect [10], the dynamical evolution for non-
linearities initially prepared in a nonequilibrium state [11],
the spectroscopical properties of driven dissipative non-
linearities [12], and entanglement [13].

In this Letter, we consider arrays of cavities that are
driven by lasers of constant intensity and dissipate photons
into their environment. Photons can tunnel between neigh-

boring cavities and interact with suitable emitters in each
cavity in such a way that they form polaritons and experi-
ence an optical nonlinearity. In this scenario, the interplay
of laser drive and photon loss leads to the emergence of
steady states, for which we derive the particle statistics and
characteristic correlations.
We find two main results. In the regime, where the Rabi

frequencies of the driving lasers are much stronger than the
nonlinearities, only one Bloch mode with quasimomentum
k is driven by the lasers, and we find two-mode squeezing
for modes with quasimomenta p and �p, such that pþ �p ¼
k. Since this squeezing emerges for weak nonlinearities, an
experimental observation would not require a strong cou-
pling regime for the employed cavities. In the complemen-
tary regime, where the nonlinearities are much stronger
than the laser drives, we find spatial anticorrelations of the
polariton densities indicating that polaritons crystallize and
are predominantly found within a specific distance from
one another. As it requires strong nonlinearities, the crys-
tallization can only be generated in cavities that operate in
the strong coupling regime [8]. We stress that this polariton
crystallization emerges despite the fact that coherent lasers
continuously drive the cavities and damping permanently
dissipates photons. This is the most significant result of this
work and has no analogue in other realizations.
Model.—Since bare photons do not interact, photon-

photon interactions or optical nonlinearities emerge only
when light interacts with optical emitters. Depending on
the strength of the photon-emitter coupling, the elementary
excitations of the system are either photons, for weak
coupling, or polaritons, superpositions of photons and
emitter excitations, for strong coupling. In the following
we will use the term ‘‘polaritons’’ in both cases. For both
regimes, their Hamiltonian can be taken to read

H ¼ �
XN
j¼1

ayj aj � J
XN
j¼1

ðayj ajþ1 þ aja
y
jþ1Þ þ

U

2

� XN
j¼1

ayj a
y
j ajaj þ

XN
j¼1

�
�j

2
ayj þ�?

j

2
aj

�
; (1)

in a frame that rotates at the frequency !L of the driving
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lasers (we set @ ¼ 1). We assume periodic boundary con-

ditions, the index j labels the resonators and ayj (aj) creates
(annihilates) a polariton in resonator j. Polaritons interact
with strength U in each resonator and tunnel between
neighboring resonators at rate J. � ¼ !pol �!L is the

detuning between polariton and laser frequency and �j

are the Rabi frequencies of the driving lasers. We assume
that all lasers have the same amplitude, but may have
different phases, �j ¼ �e�i�j . Only relative phases of

the lasers matter and we can choose �> 0. For now, we
choose�j ¼ �

2 j (j ¼ 1; 2; . . . ; N) andN to be a multiple of

4 for reasons that will become clear in the sequel. Other
values of �j will be considered below.

The Hamiltonian (1) can be implemented in several
ways [4]. One suitable approach [3] makes use of dark
state polaritons in 4-level atoms, where a dispersively
operated two polariton process gives rise to the interaction
U
2 a

y
j a

y
j ajaj in each resonator. The dynamics of the system,

including polariton losses from the cavities at a rate �, is
given by the master equation

_� ¼ �i½H;�� þ �

2

XN
j¼1

ð2aj�ayj � ayj aj�� �ayj ajÞ: (2)

The Hamiltonian H of Eq. (1) can also be written
in terms of Bloch modes, Bk ¼ 1ffiffiffi

N
p P

N
j¼1 e

ikjaj,

where k ¼ 2�l
N and l ¼ � N

2 þ 1, � N
2 þ 2; . . . ; N2 ,

to read H ¼ P
k!kB

y
kBk þ

ffiffiffi
N

p
�

2 ðB�=2 þ By
�=2Þ þ

U
2N

P
k1;k2;k3;k4

�k1þk2þ2�z;k3þk4B
y
k1
By
k2
Bk3Bk4 with an arbi-

trary integer z and !k ¼ �� 2J cosk. The damping terms

transform to
P

kð2Bk�B
y
k � By

k Bk�� �By
k BkÞ.

For our specific choice of N and �j ¼ �
2 j, lasers that

drive each cavity resonantly (� ¼ 0), constructively inter-
fere in driving the mode B�=2 of the same frequency

!�=2 ¼ � ¼ 0. Lasers that are in phase, �j ¼ �0, would

destructively interfere for this mode, B�=2, thus motivating

our choice of N and �j. We note that the lasers generate a

polariton flow in the cavity array, that can roughly be
estimated as �J sin�, where � ¼ i lnð�jþ1=�jÞ is phase
difference between the driving lasers of adjacent cavities,
and becomes maximal for � ¼ �=2. We now analyze the
steady states of Eq. (2), for which _� ¼ 0.

Strong driving regimes.—Only the k ¼ �=2 mode is
driven by the lasers and polaritons from this mode can
only scatter into other modes via the nonlinearities U. For
regimes, where � � U, one thus expects that the state of
the polariton field can be well approximated by a coherent
state in the mode k ¼ �=2 plus small perturbations. We

therefore split the mode operators, Bk ¼
ffiffiffiffi
N

p
��k;ð�=2Þ þ

bk, into a coherent part, represented by the complex num-
ber � and quantum fluctuations bk. Neglecting all quantum
fluctuations, bk, the background field � obeys the equation

of motion, _� ¼ �i�2 � iUj�j2�� �
2 �, and for the steady

state, the density of photons in the background field, n ¼
j�j2, is determined by 4U2n3 þ �2n ¼ �2, which has

n ¼ ð31=3X2=3 � 32=3�2Þ=ð6UX1=3Þ; (3)

with X ¼ 9U�2 þ ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6 þ 27U2�4

p
as the only real and

positive solution. Furthermore, a stability analysis [14]
shows that this solution is always stable, which guarantees
the existence of a unique steady state. The left plot in Fig. 1
shows n as a function of U=� and �=�. n is maximal for
U ¼ 0 and � � �. Expanding the Hamiltonian to second

order in bk and byk , we obtain

~H ¼ X
k

�
ð!k þ 2UnÞbyk bk þ

�
U�2

2
byk b

y
�k
þ H:c:

��
; (4)

where �k ¼ k
jkj�� k and terms that are linear in b�=2 have

been neglected as they cancel in the corresponding master
equation by virtue of Eq. (3). The Hamiltonian (4) is
known to lead to two-mode squeezing for the pairs of
modes (k, �k) [15]. The corresponding master equation is

quadratic in the operators byk and bk. Its steady state is

therefore a Gaussian state, that is completely determined

by the first and second order moments of byk and bk, which

are zero except for hbyk bki ¼ m and hbkb �ki ¼ g, where

m ¼ 2U2n2

12U2n2 þ �2
; g ¼ � 4U2nþ iU�

12U2n2 þ �2
�2: (5)

We can now check the validity of our approximation by

verifying that
P

khbyk bki � Nn , m � n. The resulting

phase diagram is shown in the right plot of Fig. 1, where we
plot m=n as a function of U=� and �=�.
In the regime with�> �, there is on average more than

one polariton in each cavity, n > 1, and for increasing
nonlinearities U, the state differs significantly from a co-
herent state in mode k ¼ �=2. For �< �, on the other
hand, the polariton density is small, n < 1. Since the
nonlinearities only affect states with more than one polar-
iton, they become ineffective in this regime and the state
remains coherent for higher values of U.
To obtain a more detailed picture of the steady state we

study its particle statistics, which can be calculated via its
characteristic function [15]. For the first order coherence

between modes k and p we obtain hBy
k Bpi ¼

�k;ð�=2Þ�p;ð�=2ÞNnþ �k;pm, whereas the density-density
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FIG. 1 (color online). The steady state in the strong driving
regime. Left: n as given by Eq. (3). Right: m=n as given by
Eqs. (3) and (5).
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correlations between modes k and p, gð2Þm ðk; pÞ ¼
hBy

k B
y
pBpBki=ðhBy

k BkihBy
pBpiÞ, read gð2Þm ðk; pÞ �

1þ �k��=2ð�k;p þ �kþp;��
jgj2
m2 Þ � �k;ð�=2Þ�p;ð�=2Þ 2mNn to

leading order in 1=ðNnÞ. Here we have taken into account
that jgj2, m2 � n2. Because of the weak nonlinearity U,
the driven mode k ¼ �

2 shows slight antibunching

gð2Þm ð�2 ; �2Þ � 1� 2m
Nn [15]. The nonlinearity U always scat-

ters two polaritons from mode k ¼ �
2 synchronously into

modes k and �k, c.f. Eq. (4). This leads to two-mode
squeezing where polariton pairs as given by g in Eq. (5)

are created. The term �kþp;��
jgj2
m2 describes correlations

that originate from these pairs. Since jgj2
m2 ¼ 4þ

�2=ð4n2U2Þ, these are most pronounced for strong damp-
ing, U=� � 1 and �=� � 1, where, however, the inten-
sity becomes increasingly weak, n � 1, see Fig. 1.
Importantly the observation of these pairing correlations
does not require a strong coupling regime for the employed
cavities. Nonetheless, the effect is not classical and dis-
appears for U ! 0, where g ! 0, c.f. Eq. (5). For the
correlations between different resonators, j and l,

gð1Þr ðj; lÞ ¼ hayj ali=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hayj ajihayl ali

q
and gð2Þr ðj; lÞ ¼

hayj ayl alaji=ðhayj ajihayl aliÞ, we find for jgj2, m2 � n2,

gð1Þr ðj; lÞ � eið�=2Þðj�lÞ, gð2Þr ðj; lÞ � 1� 2m
n �j;l, and hence

a spatial antibunching of gð2Þr ðj; jÞ � 1� 2 m
n [15]. All

above results are independent of the tunneling rate J, a
feature that only appears for our specific choice, �j ¼ �

2 j,

for the phases of the lasers. For laser phases where j��
J cosð�j ��j�1Þj>

ffiffi
3

p
2 �, bistabilities appear. A detailed

discussion of these cases will be presented elsewhere.
Weak driving regimes.—We now analyze the regime,

where the Rabi frequencies of the driving lasers �j are

weaker than the nonlinearities U. For these parameters we
represent the density matrix of the polaritons as a matrix
product operator and employ a time evolving block deci-
mation (TEBD) algorithm [16] that integrates the master
equation (2) in time until a steady state is reached. We use a
second-order Trotter decomposition for the Lindblad
superoperator with time steps �t ¼ U=100 (or �t ¼
U=50) and keep relative errors due to matrix truncation
below 10�8 (or 10�6) at each time step allowing for matrix
dimension up to 300� 300. We consider an array of 16
cavities and, since � � U, truncate the Hilbert space to
allow for up to 2 polaritons in each cavity.

In a first example, we choose � ¼ 0, U=� ¼ 10,
�=� ¼ 2, and J=� ¼ 1. Figure 2 shows density correla-

tions, gð2Þr ðj; lÞ (top left) and gð2Þm ðk; pÞ (top right), for the
steady state. As a consequence of the strong nonlinearity

there is a pronounced antibunching, gð2Þðj; jÞ � 1 [15]. In
marked contrast to the strong driving regimes, polaritons in

the same mode are strongly paired, gð2Þm ðk; kÞ> 1, but
polaritons in different modes are strongly anticorrelated

or antipaired, gð2Þm ðk;pÞ<1 for k � p. That is, if a polariton

is found in mode k, the probability to find a second polar-
iton in a mode p � k is lower than for independent parti-

cles. gð2Þm ðk; pÞ is smallest for k � p, where one
quasimomentum equals �=2.

Most interestingly, gð2Þðj; jþ 1Þ is larger than unity

whereas gð2Þðj; jþ 2Þ and gð2Þðj; jþ 3Þ, etc., are signifi-
cantly below unity; see bottom row of Fig. 2. Polariton
densities in neighboring cavities are thus correlated
whereas they are anticorrelated for larger separations.
That is, if a polariton is found in one cavity, the probability
to find a second polariton is for separation 1 higher and for
larger separations lower than for independent particles.
This behavior indicates that the polaritons are crystallized
and predominantly occur at distances of one cavity-cavity
separation from each other. More specifically, the polar-
itons form dimers that are extended across two neighboring
resonators and move along the array due to the flow created
by the relative phases of the lasers.
Since our system is one dimensional, has less than one

polariton per cavity, and shows strong polariton interac-
tions, one might be tempted to compare it to a Tonks-

Girardeau gas [1]. For the latter, gð2Þ is the same as for
free fermions and shows oscillating anticorrelations,
known as Friedel oscillations [17], that originate in the
Pauli exclusion principle. The density anticorrelations we
find are quantitatively different from Friedel oscillations of

a Tonks-Girardeau gas, gð2ÞTGðj; lÞ ¼ 1� ðsinð�~nðj�lÞÞ
�~nðj�lÞ Þ2,

where ~n is the number of polaritons per cavity. This is

shown in the bottom row of Fig. 2, where we plot gð2Þr ð8; jÞ
and gð2ÞTGð8; jÞ with ~n ¼ ~nð8Þ. In contrast to gð2Þr , gð2ÞTG only

shows anticorrelations, gð2ÞTG 	 1. Whereas the amplitude of

the anticorrelations is comparable, they do not oscillate.
To consider the dependence of the densities, ~n, and

density correlations, gð2Þðj; lÞ, on the polariton tunneling

J in more detail, we have computed gð2Þð8; jÞ and ~nð8Þ for
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FIG. 2 (color online). Density correlations of the steady state
for 16 cavities in the weak driving regime with � ¼ 0, U=� ¼
10, �=� ¼ 2, and J=� ¼ 2. Top left: gð2Þr ðj; lÞ. Top right:

gð2Þm ðk; pÞ. Bottom left: gð2Þr ð8; lÞ and gð2ÞTGð8; lÞ. Bottom right:

gð2Þr ð8; lÞ and gð2ÞTGð8; lÞ, zoomed in on 8 	 j 	 16.
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J=� ¼ 0, 0.1, 0.5, 1, and 2, where � ¼ 0, U=� ¼ 10, and

�=� ¼ 2. The left plot of Fig. 3 shows gð2Þr ð8; 8Þ and ~nð8Þ
as functions of J=�, whereas the right plot shows gð2Þr ð8; jÞ
for 8 	 j 	 16 and J=� ¼ 0, 0.1, 0.5, 1, and 2. The crys-
tallization signatures appear for nonzero tunneling J only
and density anticorrelations become increasingly pro-
nounced and long ranged as J is increased.

To confirm the experimental robustness of our findings

we have computed gð2Þr ð8; jÞ for smaller nonlinearities, U,
and various phase differences, � ¼ i lnð�jþ1=�jÞ.
Figure 4 shows gð2Þr ð8; jÞ for � ¼ 0, J=� ¼ 1 and �=� ¼
2. In the left plot we choose� ¼ �=2 and set U=� ¼ 5. In
the right plot we choose U=� ¼ 10 and consider � ¼ 0,
�=4, and �=2. Anticorrelations only appear for � � 0.

Whereas the strong antibunching, gð2Þr ðj; jÞ � 1, is ex-
pected for a strong nonlinearity [15], the anticorrelations,

gð2Þr ðj; lÞ< 1 for jj� lj 
 2, are more surprising. They
emerge due to and interplay between the nonlinearities
and the polariton flow generated by the relative phase
differences of the lasers.

In all our examples we find ~nðjÞ< 0:5 and gð2Þðj; jÞ �
1, which confirms that truncating the local Hilbert space to
states of at most 2 polaritons is a good approximation. The
validity of our results is also substantiated by their excel-
lent agreement with an exact solution for J ¼ 0 [14].

Experimental realization and measurements.—The crys-
tallization of polaritons we predicted here can be observed
with resonators of high single emitter cooperativity, such
as microtoroids, circuit cavities, photonic band gap cav-
ities, micropillar Bragg stacks, or Fabry-Pérot microcav-
ities on a silicon chip [8]. A straightforward method to
measure the correlations we derived is to detect the light
emitted from the structure. Detection of near-field photons
with detectors of sufficiently fast response time gives

access to correlations between cavities, gð1Þr ðj; lÞ and

gð2Þr ðj; lÞ, whereas the far field carries information on cor-

relations between the modes, gð1Þm ðk; pÞ and gð2Þm ðk; pÞ.
Furthermore, the polaritons are superpositions of photons
and emitter excitations and their statistics and correlations
can be inferred from measurements on the emitters. In
some implementations, the polaritons can even be perfectly
transferred onto the emitters prior to the measurement [3].

Even though the variations of gð2Þr ðj � lÞ are only in the

range 0:95 	 gð2Þr ðj � lÞ 	 1:05, they can reliably be mea-

sured since gð2Þr ðj � lÞ is a ratio of density correlations
which are both affected by detector inefficiencies in the
same way, leaving their ratio unaffected.
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(2004); U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

[17] J. Friedel, Nuovo Cimento 7, 287 (1958).

8 10 12 14 16

0.95

1

1.05

1.1

j

g r(2
) (8

,j)

J/γ=0
J/γ=0.1
J/γ=0.5
J/γ=1
J/γ=2

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

J/γ

n(8)
g

r
(2)(8,8)

FIG. 3 (color online). gð2Þr ð8; jÞ and ~nð8Þ as functions of J=�.
Left: gð2Þr ð8; 8Þ and ~nð8Þ as functions of J=�. Right gð2Þr ð8; jÞ for
8 	 j 	 16 and J=� ¼ 0, 0.1, 0.5, 1, and 2. � ¼ 0, U=� ¼ 10,
and �=� ¼ 2.

5 10 15
0.4

0.6

0.8

1

j

g r(2
) (8

,j)

8 10 12 14 16
0.8

0.9

1

1.1

j

g r(2
) (8

,j)

φ=π/2
φ=π/4
φ=0

FIG. 4 (color online). Left: gð2Þr ð8; jÞ for � ¼ 0, J=� ¼ 1,
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