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A simple quantum-defect model gives analytic expressions for the complex scattering length and

threshold collision rates of ultracold molecules. If the probability of reaction in the short-range part of the

collision is high, the model gives universal rate constants for s- and p-wave collisions that are independent

of short-range dynamics. This model explains the magnitudes of the recently measured rate constants for

collisions of two ultracold 40K87Rb molecules, or an ultracold 40K atom with the 40K87Rb molecule

[S. Ospelkaus et al., Science 327, 853 (2010)].
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Research utilizing ultracold atoms has become estab-
lished as a major forefront multidisciplinary area involving
diverse areas such as atomic and molecular physics, quan-
tum optics, condensed matter physics, and quantum infor-
mation. Extending such research with ultracold molecules
will open up a number of new opportunities [1,2].
Development of sources of ultracold molecules is progress-
ing rapidly [3]. It is essential to understand the elastic,
inelastic, and reactive collisions of such molecules in order
to control and utilize them effectively. A recent experiment
reported the first evidence of ultracold ‘‘chemistry’’ and
measured the reactive collision rates of fermionic 40K87Rb
molecules between 250 and 900 nK [4]. Since molecules
are much more complex than atoms, it is necessary to
develop models of threshold molecular collisions that are
adequate to account for their complexity yet simple enough
for understanding experimental data.

Here we propose a simple, yet general, model for thresh-
old molecular collision rates based on the separation of the
effects of the long- and short-range parts of the intermo-
lecular potential for a given scattering channel [5]. Our
fully quantum mechanical model uses the analytic frame-
work of generalized multichannel quantum-defect theory
(MQDT) [6,7] based on the specific version pioneered by
Mies [8–10]. The reactive or inelastic part of the short-
range collision is characterized by a dimensionless
‘‘quantum-defect’’ parameter 0 � y � 1, which is related
to the probability of irreversible loss of incoming scattering
flux from the entrance channel due to dynamics at short
range. The role of the long-range potential is to determine
how much of the entrance channel wave with very large de
Broglie wave length is transmitted to short range to expe-
rience such loss dynamics. Our MQDT model generalizes
the model of Ref. [11], which has been successfully used to
understand the magnitude of inelastic collision rates in-
volving ultracold atoms.

We find universal rate constants for s- and p-wave
collisions depending only on the long-range potential

when y ! 1, which corresponds to unit probability of
reaction at short range so that no flux is reflected at short
range back into the entrance channel. In contrast, if y � 1,
the rate constants depend strongly on the scattering length
of the entrance channel and are not universal.
We consider collisions of two particles interacting via

the van der Waals (vdW) potential at long range. These can
be S-state atoms, or molecules in the rovibrational and
electronic ground state. The scattering channels j�i ¼
ja1a2ij‘mi are defined in terms of their respective internal
states a1 and a2, and the partial wave quantum numbers
‘m. In general, the elastic rate constant Kel and the rate
constant Kls for total inelastic or reactive scattering are
given by the diagonal elements S�� of the S matrix for
channel �. Expressing S�� ¼ e2i�� in terms of an energy-

dependent complex scattering length ~a�ðkÞ ¼ ~��ðkÞ �
i ~��ðkÞ [12], defined analogously to the s-wave energy-
dependent scattering length [13,14],

~a �ðk�Þ ¼ � tan��ðk�Þ
k�

¼ 1

ik�

1� S��ðk�Þ
1þ S��ðk�Þ ; (1)

gives the rate constant contributions from channel �,

K el
�ðEÞ ¼ g�

�@

�k�
j1� S��ðEÞj2

¼ 2g�
hk�
�

j~a�ðk�Þj2f�ðk�Þ; (2)

K ls
�ðEÞ ¼ g�

�@

�k�
ð1� jS��ðEÞj2Þ

¼ 2g�
h

�
~��ðk�Þf�ðk�Þ; (3)

where k2� ¼ 2�ðE� E�Þ=@2 with E denoting the total
energy, � the reduced mass, and E� the threshold energy
of the channel �. The factor g� ¼ 1 except that g� ¼ 2
when both particles are identical species in identical inter-
nal states, a1 ¼ a2; ‘ is restricted to being even (odd) in the
case of identical bosons (fermions). The function
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f�ðk�Þ ¼ 1

1þ k2�j~a�ðk�Þj2 þ 2k� ~��ðk�Þ
; (4)

has the property that 0< f�ðk�Þ � 1 and f�ðk�Þ ! 1 as
k� ! 0. The latter is true when both conditions
k�j~a�ðk�Þj � 1 and k���ðk�Þ � 1 are met. We stress
that Eqs. (2) and (3) are exact [12], and they apply either
to coupled channel (unitary) and complex potential (non-
unitary) models.

We introduce a single channel model with a complex
potential to represent the long-range potential and short-
range loss dynamics for channel �, where for simplicity of
notation we drop the implied channel index �:

U‘ðrÞ ¼ VðrÞ þ @
2‘ð‘þ 1Þ
2�r2

� i
�ðrÞ
2

; (5)

and VðrÞ has the vdW form at long range: VðrÞ ¼ �C6=r
6

for r * R0, where R0 denotes the range of short-range
forces (e.g., the exchange interaction). The vdW potential

is characterized by the length R6 ¼ 1
2 ð2�C6=@

2Þ1=4, or the
closely related length �a ¼ 4�R6=�ð14Þ2 [15]. The imagi-

nary part �ðrÞ, which is assumed to vanish beyond R0,
simulates all short-range coupling at r < R0 to exoergic
nonthreshold exit channels that result in loss from the
entrance channel. We assume that the kinetic energy re-
lease in loss channels is much larger than any exit barriers.
The short-range VðrÞ for r < R0 should be viewed as a
pseudopotential which determines the phase of the wave
function for r > R0. This phase determines the ‘‘back-
ground’’ s-wave scattering length a for the potential
VðrÞ, which can in general be different for different ‘m
in the case of general anisotropic potentials.

Decomposing the wave function into real and imaginary
parts, �ðrÞ ¼ FðrÞ þ iGðrÞ, gives the two-channel
Schrödinger equation

@2�

@r2
þ 2�

@
2
½E�WðrÞ��ðrÞ ¼ 0; (6)

for the wave function �ðrÞ ¼ fFðrÞ; GðrÞg with a non-
Hermitian interaction matrix

W ðrÞ ¼ VðrÞ þ @
2‘ð‘þ1Þ
2�r2

�ðrÞ
2

� �ðrÞ
2 VðrÞ þ @

2‘ð‘þ1Þ
2�r2

0
@

1
A: (7)

We solve the two-channel problem in the framework of
MQDT [6–8], which separates the effects of the long- and
short-range parts of the potential. We adopt the notation of
Mies [8], and introduce a quantum-defect matrix YðEÞ ¼
ff0;�yðEÞg; fyðEÞ; 0gg. The antisymmetric form of Y re-
sults from the non-Hermitian potential WðrÞ.

The wave function for r * R0 is

� ðrÞ ¼ ½f̂ðrÞIþ ĝðrÞYðEÞ�A: (8)

Here, A is some constant vector, I is the identity matrix,

and f̂ðrÞ, ĝðrÞ are solutions of the Schrödinger equation in
the real part of the potentialU‘ðrÞ that have ‘‘local’’ WKB-

like normalization at short distances [8],

f̂ðr; EÞ ffi kðrÞ�1=2 sin�ðrÞ;
ĝðr; EÞ ffi kðrÞ�1=2 cos�ðrÞ;

�
r * R0; (9)

where kðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðE� Re½U‘ðrÞ�Þ

p
=@ is the local wave

vector, and �ðrÞ ¼ R
r dxkðxÞ is the WKB phase.

Typically, R0 � R6, and for a s- or p-wave ultracold
collision one can assume that yðEÞ ¼ y is independent of
E. The two parameters a and y completely represent the
effects of the complex short-range dynamics on the wave
function in channel � for r * R0.
Some intuition about y is gained from writing �ðrÞ at

small distances, R0 < r � R6, using the WKB-like form

in Eq. (9) for f̂ðrÞ and ĝðrÞ:

�ðrÞ�exp½�i
R
r kðxÞdx�ffiffiffiffiffiffiffiffiffi

kðrÞp �
�
1�y

1þy

�
exp½iRr kðxÞdx�ffiffiffiffiffiffiffiffiffi

kðrÞp :

(10)

The first term represents the flux of incident particles,
whereas the second term gives the flux reflected from the
short-range potential. Hence, for y ¼ 1 there is no out-
going flux, whereas for y not unity there is some back
reflection. Finally, for y ¼ 0 (no losses), the incident and
reflected fluxes are equal, and we recover the standard

scattering wave function�ðrÞ � k�1=2ðrÞ sin½Rr kðxÞdx� ¼
f̂ðrÞ. In the following we will assume 0 � y � 1 [16].
Applying the standard MQDT formulas relating the

quantum-defect matrix Y to the scattering S matrix [8],
we calculate ~aðEÞ assuming kR6 � 1

~aðEÞ � � 1

k

�
tan�ðEÞ � yC�2ðEÞ

iþ y tan�ðEÞ
�
; (11)

Here, CðEÞ and tan�ðEÞ are the MQDT functions [8] that
connect the solutions with short- and long-range normal-

ization: fðrÞ ¼ C�1ðEÞf̂ðrÞ, gðrÞ ¼ CðEÞ½ĝðrÞ þ
tan�ðEÞf̂iðrÞ�, where the scattering solutions in the asymp-
totic region are defined as follows:

fðr; EÞ ffi sinðkr� ‘�=2þ �Þ= ffiffiffi
k

p
;

gðr; EÞ ffi cosðkr� ‘�=2þ �Þ= ffiffiffi
k

p
;

)
r ! 1; (12)

where �ðkÞ is the phase shift. The functions CðEÞ, tan�ðEÞ
and �ðEÞ are found from the analytic vdW theory [17]. The
small-k behavior for an s wave is

C�2ðE; ‘ ¼ 0Þ ���!k!0
k �a½1þ ðs� 1Þ2�; (13)

tan�ðE; ‘ ¼ 0Þ ���!k!0
1� s; (14)

and tan�ðE; ‘ ¼ 0Þ ! �ka as k ! 0, where s ¼ a= �a is
the dimensionless scattering length. For a p wave:

C�2ðE; ‘ ¼ 1Þ ���!k!0
2k �a1ðk �aÞ2 1þ ðs� 1Þ2

ðs� 2Þ2 ; (15)
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tan�ðE; ‘ ¼ 1Þ ���!k!0
s=ðs� 2Þ; (16)

tan�ðE; ‘ ¼ 1Þ ���!k!0
2k �a1ðk �aÞ2 s� 1

s� 2
; (17)

where �a1 ¼ �a�ð14Þ6=ð144�2�ð34Þ2Þ � 1:064 �a.

For small y Eqs. (3) and (11) predict that the loss rate

scales as ~�ðEÞ � yC�2ðEÞ=k. This can be interpreted [10]
as an energy-insensitive probability y of the short-range
reaction multiplied by the functionC�2ðEÞ, which provides
the proper scaling of the wave function amplitude between
the short-range and asymptotic zones.

A key result of this Letter is Eq. (11) for ~aðEÞ for
arbitrary y. Equations (13)–(17) yield the small-k analytic
limits of Eq. (11), valid when kj~aj � 1 and kR6 � 1:

~a ‘¼0ðkÞ ¼ aþ �ay
1þ ð1� sÞ2
iþ yð1� sÞ ; (18)

~a ‘¼1ðkÞ ¼ �2 �a1ðk �aÞ2 yþ iðs� 1Þ
ysþ iðs� 2Þ : (19)

These expressions parameterize the elastic and inelastic
collision rates in terms of the two dimensionless parame-
ters s and y, namely, an entrance channel phase and a short-
range interchannel coupling strength, plus the van der
Waals parameter �a. In the special case of unit probability
of short-range loss from the entrance channel, y ! 1, we
find the universal result that ~� is independent of s and y,
and depends on �a only. Specifically, �‘¼0 ¼ �‘¼0 ¼ �a for
an swave and�‘¼1 ¼ � �a1ðk �aÞ2 and�‘¼1 ! �a1ðk �aÞ2 for a
p wave. This gives the universal rate constants determined
solely by the quantum transmission of the long-range
potential:

K el
‘¼0 ¼ 4g

h

�
k �a2 Kls

‘¼0 ¼ 2g
h

�
�a (20)

K el
‘¼1¼4	g

h

�
k �a21ðk �aÞ4 Kls

‘¼1¼2	g
h

�
�a1ðk �aÞ2 (21)

valid for kR6 � 1. The factor 	 ¼ 3 for ‘ ¼ 1 for a
rotationless molecule in the universal limit, since all three
m components have the same C6 and contribute equally. In
general, a sum of the different contributions from each m
would need to be taken.

We have verified Eqs. (20) and (21) by numerical cal-
culations with a complex potential. These equations also
reproduce the numerical model of Orzel et al. [11] for s
and p waves, for which y ¼ 1 is an excellent approxima-
tion for ionizing collisions of Xe metastable atoms. The
value of Kls

‘¼0 predicted by Eq. (20) agrees with the

measured value of Ref. [11] within experimental uncer-
tainty. Hudson et al. [18] also found that a numerical
implementation of the model of Ref. [11] explained their
vibrational relaxation data for 85Rb133Cs molecules,
although the error bars were quite large.

In general, y is not unity, and there can be reflected flux
from short range back into the entrance channel, so that ~a is
sensitive to both s and y. Figure 1 shows the complex
scattering length ~a plotted in the f�;�g plane as y and s
vary for s and p waves. The figure shows ~a lies on a circle
for a fixed value of y. For swaves these circles are centered
at f �a; �aðy2 þ 1

2yÞg, and have radius �að1� y2Þ=ð2yÞ, while for
p waves they are centered at f� �a1; �a1ðy2 þ 1

2yÞg and have

radius �a1ð1� y2Þ=ð2yÞ. The points at the top (bottom) of
the circles correspond to the maximal (minimal) loss:
�‘¼0 ¼ �a=y and �‘¼1 ¼ �a1=ðyk2 �a2Þ (�‘¼0 ¼ y �a and
�‘¼1 ¼ y �a1=ðk2 �a2Þ), and they are realized at s ¼ 1 and
s ¼ 2 [19] (s ¼ 1 and s ¼ 0), for the s and p wave,
respectively. Hence, counterintuitively, the largest loss
rates (� � �a) occur only for small values of the reaction
probability y, but only when s > 1 is large enough that
there is a near-threshold bound state that allows the CðEÞ�2

function to build up a large amplitude of the short-range
wave function.
Our theory explains recent experimental data on the

reaction rate coefficients of a gas of ultracold 40K87Rb
molecules in their vibrational and rotational ground state
[4]. These molecules are fermions with 36 distinct states of
nuclear spin. The experiment could prepare the molecules
in either the same or different spin levels, thereby allowing
measurement of both s- and p-wave reactive collision
rates. Figure 2 compares the experimental data with two
different predictions of our MQDT model. The dashed line
shows the predictions of the universal model at low k,
whereKls

‘¼0ðTÞ ¼ 4ðh=�Þ �a is independent of temperature

T and

K ls
‘¼1ðTÞ ¼

�ð1=4Þ6
�ð3=4Þ2 �a3

kBT

h
¼ 1513 �a3

kBT

h
(22)

varies linearly with T. With �a ¼ 118ð3Þ a0 from two
ab initio calculations of C6 [20,21], assuming a 5% uncer-
tainty, Kls

‘¼1ðTÞ=T ¼ 0:8ð1Þ 	 10�5 cm3 s�1 K�1, com-

FIG. 1 (color online). Real and imaginary parts of ~a‘¼0= �a (left
panel) and ð~a‘¼1= �aÞðk �aÞ�2 (right panel) as k ! 0 for different
values of the loss parameter y (set of circles) as the phase
parameter s ¼ a= �a, color coded according to the value of
arctanðsÞ=�, varies over its full range of �1< a<þ1. The
blue-red (dark gray-medium gray) boundary occurs where U‘ðrÞ
has a bound state at E ¼ 0.
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pared to the measured value of 1:1ð3Þ 	 10�5 cm3 s�1 K�1

for the lowest spin state [4].
While the universal p wave Kls

‘¼1 agrees with the data

within mutual uncertainties, the s wave Kls
‘¼0 ¼

0:8	 10�10 cm3=s is a factor of 2 smaller than the mea-
sured 1:9ð4Þ 	 10�10 cm3=s. This departure from univer-
sality may yield information about the short-range

dynamics. We have fitted the formula (3) with ~� and ~�
from Eqs. (18) and (19) to both the s- and p-wave experi-
mental data to estimate values of the y and s parameters,
assuming two distinct s parameters for ‘ ¼ 0 and ‘ ¼ 1.
Since the equations for the complex scattering length are
quadratic in s, this yields two sets of solutions:
(i) y ¼ 0:397, s‘¼0 ¼ 10:3, s‘¼1 ¼ 3:43; (ii) y ¼ 0:420,
s‘¼0 ¼ �48, s‘¼1 ¼ 3:43. The solid lines in Fig. 2 show
that agreement can be obtained with the data in this way,
implying that a significant fraction of the incoming flux
may be reflected back into the entrance channel.

Our model predictions can be tested by other experi-
ments. For example, if y is not unity, unlike the case
studied by Ref. [11], there would be some dependence on
isotopic mass, since s will vary with mass. In addition,
experiments with an electric field turned on to induce a
molecular dipole should have short-range reactions gov-
erned by the same s and y parameters, if the asymptotic
solutions of the dipole problem are matched to the solu-
tions in the vdW zone R0 < r < R6. Thus, collision rate
measurements in an electric field could test universality
and the role of short-range dynamics.

Equation (21) predicts a universal rate constant of
1:1ð1Þ 	 10�10 cm3=s for the reactive s-wave collision of
40K atoms with 40K87Rb molecules, using the C6 constant

from Kotochigova [20]. This is quite close to the measured
value, 1:7ð3Þ 	 10�10 cm3=s, of Ospelkaus et al. [4].
Our MQDT parameterization provides a simple frame-

work for characterizing and understanding threshold mo-
lecular collisions. The MQDT method could readily be
generalized to include the effects of molecular resonance
states, threshold exit channels, finite electric fields, or
reduced dimensional geometry. Collisional resonances
should be suppressed when y ! 1 but should be prominent
if y � 1. A MQDT framework may also offer a way to
incorporate quantum dynamics into simpler generalized
quantum threshold Langevin models of cold molecular
collisions in electric fields [22].
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FIG. 2 (color online). Loss rate constant Kls of 40K87Rb
molecules versus temperature. Experimental data [4] for a single
component gas of molecules in spin states jF ¼ �4;MF ¼ 1

2i
(blue squares), jF ¼ �4;MF ¼ 1

2i (red triangles), and for 50=50

mixture of these two spin states (green dots), are compared with
prediction of MQDT in the universal regime (y ¼ 1, dashed
lines), and in the nonuniversal regime (y < 1, solid lines). In the
latter case the values of y, and s parameters for ‘ ¼ 0 and ‘ ¼ 1
are determined by fitting to the experimental data.
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