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We study numerically the strong coupling limit of lattice QCD with one flavor of massless staggered

quarks. We determine the complete phase diagram as a function of temperature and chemical potential,

including a tricritical point. We clarify the nature of the low temperature dense phase, which is strongly

bound ‘‘nuclear’’ matter. This strong binding is explained by the nuclear potential, which we measure.

Finally, we determine, from this first-principles limiting case of QCD, the masses of ‘‘atomic nuclei’’ up to

A ¼ 12 ‘‘carbon’’.
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It has been a long-standing goal to determine the prop-
erties of nuclear matter from first principles, using the
theory which describes the interactions inside each nu-
cleon, namely, quantum chromodynamics (QCD). Lattice
QCD simulations have been extremely successful at deter-
mining the properties of a single proton, neutron or other
hadron [1], and should in principle be appropriate for
studying nuclear matter as well. Great progress has been
made in this area, with the study of nuclear scattering
lengths and potentials [2–4], and of the energies of two-
and three-baryon systems [5]. Nevertheless, in these pio-
neering studies the quark masses are still far from their
real-world values and the matter density is still very small.
The ab initio study of real-world nuclear matter remains a
distant goal. The technical issue of simulating quarks
which are as light as in nature is being resolved [6], but
two more obstacles stand in the way. (i) There is a large
scale separation Oð50Þ between the nucleons’ masses and
their binding energy. Accuracy on the latter requires ex-
cellent control over errors. (ii) There is a severe ‘‘sign
problem’’: the functional integral at nonzero nuclear den-
sity has an oscillatory integrand, which causes large nu-
merical cancellations and altogether prevents its usual
interpretation as a Monte Carlo sampling probability. For
these two reasons, the state-of-the-art approach is that of
effective field theory [7], whose couplings still need to be
derived by matching to QCD.

Here, we consider a limit of lattice QCD where the
above obstacles can be overcome: the limit of infinite
coupling. Because of asymptotic freedom, the lattice spac-

ing a goes to zero with the bare coupling g as a /
expð� 4�2

33 �Þ with � ¼ 6=g2. In the opposite limit � ¼ 0

we will clearly have large lattice artifacts. Moreover, dif-
ferent discretizations of continuum QCD, all equivalent at
weak coupling � � 1, may behave differently. We choose
the staggered discretization of the Dirac operator and study
the Euclidean partition function

Zðmq;�Þ ¼
Z

DUD ��D�eSF ; (1)

with gauge links U in SUð3Þ and action

SF ¼ X
x;�¼1;4

�x;�̂ ��x½Ux;�̂�xþ�̂ �Uy
x��̂;�̂�x��̂�

þ 2mq

X
x

��x�x (2)

on a four-dimensional N3
s � N� lattice, with antiperiodic

boundary conditions in Euclidean time for the fermions �,

periodic otherwise. The �x;�̂ ¼ ð�1ÞP�<�
x� , �x;1̂ ¼ 1 are

the usual staggered phases. The chemical potential � and
an anisotropy 	 are introduced by multiplying the timelike
gauge links Ux;�4̂ by 	 expð�a�=	Þ in the forward and

backward directions, respectively. The usual plaquette
term which accounts for the gluonic action is absent
here, since it is multiplied by �. The anisotropy 	 allows
the temperature T to be varied continuously, via T ¼
a�1	2=N� at infinite coupling [8]. In this Letter, we con-
sider only one quark species and set its mass mq to zero.

Our model is clearly very far from continuum QCD
which contains two light quark flavors: our ‘‘quarks’’ live
on a coarse cubic crystal, come in only one flavor and have
no spin. This causes considerable changes in the symme-
tries of the theory, its bound states and their interactions,
and its phase diagram. Our model belongs to the family of
strongly correlated fermion systems rather than that of
quantum field theories. Still, there is ample motivation to
pursue its study. First, like continuum QCD, it confines
colored objects, and has, for mq ¼ 0, a continuous global

Uð1Þ symmetry

�ðxÞ ! ei"ðxÞ
�ðxÞ; ��ðxÞ ! ��ðxÞei"ðxÞ
 8 x; (3)

where "ðxÞ ¼ ð�1ÞP4
x� . This is the 1-flavor version of

chiral symmetry, spontaneously broken in the vacuum
and restored at high temperature or density. Second, this
model has been the object of analytic mean-field treatment
since the earliest days of lattice QCD [9] continuing up to
now [10–12]. These approximate analytic predictions
should be checked against numerical simulations using
an exact algorithm. Finally, all the obstacles for large �
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mentioned earlier can be tamed by exploiting an alternative
strategy, practical when � ¼ 0.

Instead of performing the Grassmann integral in Eq. (1)
and obtaining a determinant which becomes a complex
function of the gauge links U when � � 0, one integrates
analytically over the gauge links first [13]. After this step,
only colorless objects survive and propagate from one
lattice site to a neighboring site: mesons (pions), repre-
sented by unoriented ‘‘dimers’’ joining the two sites, and
baryons, represented by oriented triple bonds. Because
each site hosts Nc ¼ 3 Grassmann fields � and 3 fields
��, a triality constraint arises: each site is attached to
exactly 3 dimers, or is traversed by a baryon loop. Thus,
baryon loops are self-avoiding. After performing the
Grassmann integration, the partition function becomes a
weighted sum over configurations of dimers (nx;�̂ ¼
0; . . . ; 3 dimers for each link x, �̂) and self-avoiding baryon
loops C [14]:

Zð�Þ ¼ X
fnx;�̂;Cg

Y
x;�̂

	2��;4nx;4̂
ð3� nx;�̂Þ!

nx;�̂!

Y
C

wðCÞ; (4)

where a weight wðCÞ ¼ �ðCÞ	3N4̂ðCÞ expð3k�aN�=	Þ is
associated with each baryon loop C. Here, N4̂ðCÞ is the

number of timelike links on the loop, k is its winding
number in this direction and �ðCÞ ¼ �1 is a geometry-
dependent sign. Thus, the weight of a configuration can be
negative even when � ¼ 0, which seems much worse than
the traditional strategy. Yet, this sign problem can be
solved by analytically resumming configurations where C
is a baryon loop or a self-avoiding pion loop made of
alternating single and double dimers [14]. After this step,
the sign problem remains mild even when � � 0 [15], so
that lattices of size 163 � 4 can be simulated using the
standard technique of reweighting at all values of �, thus
allowing for a reliable determination of the full (�, T)
phase diagram. The final technical difficulty is to devise a
Monte Carlo algorithm which preserves the triality con-
straint at each site. This is achieved by the worm algorithm
[16], adapted for strong coupling SUð2Þ and Uð3Þ lattice
theories in [17], and readily modified here for SUð3Þ. It
produces global updates whose high efficiency does not
degrade as mq ! 0.

Setting the scale.—We first compared, at T ¼ � ¼ 0
and for nonzero quark mass, the results of our approach
with those of the traditional sampling of the fermion
determinant with the Hybrid Monte Carlo algorithm on
the same 83 � 16 lattice size [18]: there was complete
agreement. Then, setting mq ¼ 0, we extracted the baryon

mass mB from its Euclidean correlator Gð�Þ, obtaining
amB ¼ �1=2 logGð�þ 2aÞ=Gð�Þ ¼ 2:88ð1Þ, in close
agreement with mean-field [9] and large-Nc [19] predic-
tions. Equating our baryon mass with the real-world proton
mass gives a � 0:63 fm. Using instead the � mass, which
is perhaps more appropriate for our one-flavor model, gives
a � 0:46 fm. Alternatively, from the � meson mass and
the pion decay constant we obtain a � 0:455 fm and a �

1:4 fm, respectively. These different values give us an
estimate of the effective coarseness of our lattice, and their
dispersion gives an idea of the magnitude of our systematic
errors when comparing to real-world QCD: our model is
only a caricature of the latter.
Phase diagram.—We now turn to the phase diagram as a

function of temperature T and quark chemical potential �
[15]. Since we take the quark mass to vanish, the chiral
symmetry Eq. (3) is exact but spontaneously broken at
small (�, T), with order parameter h �c c i. When � ¼ 0,
a mean-field analysis predicts symmetry restoration at
aTc ¼ 5=3, whereas the Monte Carlo study of [20] on
N� ¼ 4 lattices, extrapolated to mq ¼ 0, finds aTc ¼
1:41ð3Þ. Here, simulating directly at mq ¼ 0, we assume

critical exponents of the expected 3d Oð2Þ universality
class, and find aTc ¼ 1:319ð2Þ, 1.402(3), 1.417(3), respec-
tively, for N� ¼ 2, 4, 6, indicating an N� ! 1 limit about
15% smaller than the mean-field prediction. At T ¼ 0
the transition is strongly first order, as we will see shortly.
A tricritical point separates the regimes of first- and
second-order transitions. Using finite-size scaling on
N� ¼ 4 lattices, we determine its location to be ða�TCP;
aTTCPÞ ¼ ð0:33ð3Þ; 0:94ð7ÞÞ (see Fig. 1). This should be
compared with the analytic prediction (0.577, 0.866) of
[11]. The rather large difference in �TCP underlines the
Oð1=dÞ accuracy of a mean-field treatment, and justifies a
posteriori our Monte Carlo study.
In spite of the resemblance of Fig. 1 to the expected

deconfinement transition in massless two-flavor QCD, here
the two phases are both confining, with pointlike mesons
and baryons, and so the phase transition is to dense, chir-
ally symmetric, crystalline nuclear matter. At T ¼ 0 the
baryon density jumps from 0 to 1, a saturation value caused
by the self-avoiding nature of the baryon loops, which
itself originates from their fermion content. In physical
units, this represents about 4 ‘‘nucleons’’ per fm3, around
25 times the real-world value.
An intriguing feature of this T ¼ 0 transition is the value

of �critical, which both mean-field [9] and an early
Monte Carlo study [14] find much smaller than the naive
threshold value mB=3. However, the ergodicity of the
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FIG. 1 (color online). (�, T) phase diagram of 1-flavor strong
coupling QCD, with massless staggered fermions (N� ¼ 4).
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simulations of [14] was questioned in [21], which was
found to be justified in [22]. This motivated us to redeter-
mine �critðT ¼ 0Þ using an improved method inspired by
the ‘‘snake’’ algorithm [23]: When two phases coexist, the
free energy necessary to increase by a ‘‘slice’’ L� L� a
the volume occupied by dense nuclear matter can be de-
composed into L2 elementary contributions, looking ge-
nerically like Fig. 2(a), where one additional static baryon
is attached to 3 neighbors. We measured the free energy
�F=T of this elementary increment on a large 83 � 16
lattice, and obtained a�F ¼ a�crit

B ¼ 1:78ð1Þ, rather close
to both mean-field predictions [9] and Monte Carlo extrap-
olations [14], but much smaller than amB. As already
recognized in [24], the reason that �crit

B < mB must then
be the presence of a strong nuclear attraction.

Nuclear matter.—Since our baryons are pointlike, there
is no conceptual difficulty in defining the nuclear potential
VNNðRÞ, unlike in the real world [25]. We measured VNN

using again the snake algorithm, this time extending little
by little in Euclidean time the worldline of a second baryon
at distance R from the first. The result is shown in Fig. 3.
Aside from the hard-core repulsion, there is indeed a strong
nearest-neighbor attraction, a slight repulsion at distance

a
ffiffiffi
2

p
, and almost no interaction beyond that distance. Thus,

VNN has similar features to the real-world nuclear interac-
tion, whose properties are commonly ascribed to subtle
competition between attractive � exchange and repulsive
! exchange. The depth of the minimum �120 MeV and
the corresponding distance �0:6 fm are even quantita-
tively plausible. This nearest-neighbor attraction also ex-
plains a posteriori the value of �crit

B : each baryon added to
the dense phase binds with 3 nearest neighbors, which
reduces the increase in free energy from amB to only
aðmB þ 3VNNðaÞÞ � 1:7, consistent with a�crit

B .
Similarly, we can predict the T ¼ 0 surface tension of

nuclear matter: in a periodic cubic box, when building a
first slice of nuclear matter with two interfaces in the dilute
phase, each new baryon binds with only 2 nearest neigh-
bors [Fig. 2(b)] instead of 3 in the bulk [Fig. 2(a)], thus
increasing its free energy by jVNNðaÞj for an increase of

2a2 in the interface area, yielding � � a�2

2 jVNNðaÞj.
This large interface tension �200 MeV=fm2 has an

impact on the stability of ‘‘nuclei’’ of various sizes and

shapes: for a given atomic number A, those with a shape
close to a sphere (or a cube) will have a smaller mass.
Using the same variant of the snake algorithm, we have
added baryons, one by one, to form such nuclei while mea-
suring the successive increments in free energy. For A ¼ 2
our ‘‘deuteron’’ binding energy is about 120 MeV: the real-
world binding energy of �2 MeV results from delicate
cancellations which do not occur in our 1-flavor model, and
the binding energy remains of the same magnitude as the
depth of VNN. For larger A, the resulting Fig. 4(a) does
indeed show increased stability for nuclei having square
(A ¼ 4), cubic (A ¼ 8) or parallelepipedic (A ¼ 12)
shapes. Other ‘‘isomers’’ with different shapes, studied
exhaustively for A ¼ 4 and sketched in Fig. 4(b), have
clearly larger masses. Moreover, the average mass per
‘‘nucleon’’ is well described by the first two (bulk and
surface tension) terms of the Weizsäcker phenomenologi-
cal formula:

mðAÞ=A ¼ �crit
B þ ð36�Þ1=3a2�A�1=3; (5)

where � is set equal to a�2

2 jVNNðaÞj in the figure. The next

higher-order terms in this formula come from isospin and
Coulomb forces, which are both absent in our model.
Discussion and Conclusions.—An interesting aspect of

our study is the origin of the nuclear interaction. The
nucleons are pointlike and self-avoiding, so that only the
hard-core repulsion is explicit. There is no direct meson
exchange in our crude model. In a way reminiscent of the
Casimir effect between two neutral plates, the interaction
proceeds by the rearrangement of the pion bath caused by
the excluded volume of the nucleon. This rearrangement is
visible in Fig. 5 for one nucleon: at a neighboring site, the
three pion lines attached to each site have fewer options
and orient more often along the Euclidean time, which
increases the pion energy. In fact, the nucleon mass amB �
2:88 can be decomposed into a bare mass 3� 3=4 ¼ 2:25,
which is the energy increase ‘‘inside’’ the nucleon and can
be assigned to the three valence quarks, and an energy

(a) (b)

FIG. 2 (color online). (a) Adding a baryon to grow an addi-
tional layer of bulk nuclear matter. Each new baryon binds to 3
nearest neighbors. (b) Building a first layer of nuclear matter
inside the hadron gas, thus creating two interfaces. Each new
baryon binds to 2 nearest neighbors.
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FIG. 3 (color online). Energy of a second static baryon at
distance R from the first, i.e., [mB þ VNNðRÞ], where VNNðRÞ
is the nuclear interaction potential. The horizontal band indicates
the mass of an isolated baryon and corresponds to VNN ¼ 0. At
R ¼ 0 the potential is infinitely repulsive.
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increase � 0:63 in the surrounding pion ‘‘cloud’’. When
two nucleons are next to each other, the latter increase is
limited to 10 nearest neighbors instead of 2� 6, which
explains the attraction between them (in sign and roughly
in magnitude). This excluded volume or steric effect is thus
the origin of the nuclear potential, and ultimately of nu-
clear stability, in our model. In real QCD, the pion density
is not constrained as in Eq. (4). Nevertheless, it is going to
be high at temperatures T �m� [26] and one should ex-
pect the same steric effect to enhance nuclear attraction at
such temperatures.

To summarize, in a crude model of QCD, 1-flavor lattice
staggered fermions at strong coupling � ¼ 0, we have
been able to obtain the (�, T) phase diagram and derive
nuclear interactions and nuclear masses from first prin-
ciples, uncovering a simple, but universal, steric origin of
the nuclear interaction. This model can be improved in
many ways. One simple modification consists of giving a
nonzero mass to the quarks: the nuclear interaction will
weaken as the pion mass is increased, in a way which can
be compared with effective field theories. Less simple but
feasible improvements include introducing isospin with a
second quark flavor, and measuring theOð�Þ correction as

done analytically in [27,28]. These will bring our model
much closer to real QCD.
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FIG. 4 (color online). (a) Mass per nucleon of A ¼ 1; . . . ; 12
nuclei. For A ¼ 3, 4 all possible geometric isomers are included.
The solid line shows the parameter-free Bethe-Weizsäcker
Eq. (5), with the surface tension � set to a�2

2 jVNNðaÞj. (b) Cor-
responding nuclear geometries in order of increasing mass.
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FIG. 5 (color online). Energy density of the pion cloud as a
function of the Euclidean distance to a static baryon.
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