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We compute the purely gluonic contribution to the static QCD potential at three-loop order. This

completes computation of the static potential at this order.
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For more than 30 years, the static QCD potential
VQCDðrÞ has been studied extensively for the purpose of

elucidating the nature of the interaction between a heavy
quark and antiquark. Generally, VQCDðrÞ at short distances
can be computed accurately by perturbative QCD. On the
other hand, the potential shape at long distances should be
determined by nonperturbative methods, such as lattice
simulations or phenomenological potential-model analyses
or computations based on string-inspired models.

Computations of VQCDðrÞ in perturbative QCD have a

long history. At the tree level, VQCDðrÞ is merely a

Coulomb potential, �CF�S=r (CF ¼ 4=3 is a color fac-
tor), arising from a one-gluon-exchange diagram. The one-
loop corrections (with massless and/or massive internal
quarks) were computed in [1,2]. The two-loop correction
(with massless internal quarks) was computed in [3]. The
two-loop correction due to massive internal quarks was
computed in [4] (partly corrected in [5]) [6]. The logarith-
mic correction at three loop originating from the ultrasoft
scale was first pointed out in [1] and computed in [8].
Renormalization-group (RG) improvement of VQCDðrÞ at
next-to-next-to-leading logarithmic order was performed
in [9]. A logarithmic contribution at Oð�5

SÞ was computed

in [10]. The contributions of the massless quark loops to
the three-loop correction were computed in [11]. The only
remaining correction at three-loop order is the purely
gluonic contribution, which we compute in this Letter.

For a long time, the perturbative QCD predictions of
VQCDðrÞ were not successful in the intermediate distance

region, relevant to the bottomonium and charmonium
states. In fact, the perturbative series turned out to be
poorly convergent at r * 0:1 fm; uncertainty of the series
is so large that one could hardly obtain meaningful pre-
dictions in this distance region. Even if one tries to improve
the perturbation series by certain resummation prescrip-
tions (such as RG improvement), scheme dependence of
the results turns out to be very large; hence, one cannot
obtain accurate predictions of the potential in this region. It
was later pointed out that the large uncertainty of the
perturbative prediction can be understood as caused by
the Oð�QCDÞ infrared (IR) renormalon contained in

VQCDðrÞ [12].

The situation has changed dramatically since the dis-
covery of the cancellation of Oð�QCDÞ renormalons in the

total energy of a static quark-antiquark pair EtotðrÞ �
VQCDðrÞ þ 2mpole [13]. Convergence of the perturbative

series for EtotðrÞ improved drastically, and much more
accurate perturbative predictions for the potential shape
became available. It was understood that a large uncer-
tainty originating from the Oð�QCDÞ renormalon in

VQCDðrÞ can be absorbed into twice the quark pole mass

2mpole. Once this is achieved, perturbative uncertainty of

EtotðrÞ is estimated to be much smaller.
Then it was readily recognized that perturbative con-

vergence of VQCDðrÞ can be improved by adding a

(r-independent) constant at each order of the perturbative
expansion, since the Oð�QCDÞ renormalon is r indepen-

dent. The conventional prescription to fix VQCDðrÞ ! 0 at

r ! 1 is not optimal as the convergence of the perturba-
tive series is worse at larger r; rather, it is better to fix
VQCDðrÞ at some small distance. As it turned out, VQCDðrÞ
becomes steeper at r * 0:1 fm as the order of the expan-
sion is raised; hence, the convergence of the perturbative
series becomes worse if we fix VQCDðrÞ at r ! 1. This

feature, that the perturbative potential becomes steeper
than the Coulomb potential as r increases, is understood,
within perturbative QCD, as an effect of the running of the
strong coupling constant [14]. In fact, several studies have
shown that perturbative predictions for VQCDðrÞ agree well
with phenomenological potentials and lattice calculations
of VQCDðrÞ in the intermediate distance region [5,14–16].

The improvement of the situation opened up vast appli-
cations of the QCD potential in heavy quarkonium physics
[17]. For instance, higher-order computations of VQCDðrÞ
play crucial roles in precise determinations of mc, mb, mt

from the masses of charmonium, bottomonium, and
(would-be) toponium states. The three-loop correction to
VQCDðrÞ is one of the missing parts in these computations

and also in recent efforts to complete next-to-next-to-next-
to-leading order corrections to heavy quark production
near threshold at eþe� colliders [18]. Another application
is a precise determination of �S, from comparison of the
perturbative prediction and lattice computations of
VQCDðrÞ [19].
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The static QCD potential is defined from an expectation
value of the Wilson loop as

VQCDðrÞ ¼ � lim
T!1

1

iT
log

h0jTrPeig
H

C
dx�A� j0i

h0jTr1j0i

¼
�
�2e�E

4�

�
� Z dd ~q

ð2�Þd e
i ~q� ~r

�
�4�CF

�VðqÞ
q2

�
; (1)

where q ¼ j ~qj and C is a rectangular loop of spatial extent
r and time extent T. The second equality defines the
V-scheme coupling constant, �VðqÞ, in momentum space.
We employ dimensional regularization with one temporal
dimension and d ¼ D� 1 ¼ 3� 2� spatial dimensions. A
prefactor is included such that �VðqÞ is defined to be di-
mensionless; �E ¼ 0:5772 . . . denotes the Euler constant.

In perturbative QCD, �VðqÞ is calculable in the series
expansion of the strong coupling constant. We denote the
perturbative evaluation of �VðqÞ as

�PT
V ðqÞ ¼ �Sð�Þ X

1

n¼0

Pnð‘Þ
�
�Sð�Þ
4�

�
n
; (2)

with

‘ ¼ logð�=qÞ: (3)

Here, �Sð�Þ denotes the strong coupling constant renor-
malized at the renormalization scale �, defined in the

modified minimal subtraction (MS) scheme, and Pnð‘Þ
denotes an nth-degree polynomial of ‘. The RG equation
of �Sð�Þ is given by

�2 d

d�2
�Sð�Þ ¼ ��Sð�Þ X1

n¼�1

�n

�
�Sð�Þ
4�

�
nþ1

; (4)

where �n represents the (nþ 1)-loop coefficient of the
beta function [20]. For n � 2, the only part of the poly-
nomial Pnð‘Þ that is not determined by the RG equation is
an � Pnð0Þ. For n � 3, Pnð‘Þ includes IR divergences in
terms of poles of � and associated logarithms, whose
coefficients are not determined by �i’s. At three-loop
order, we have

P3ð‘Þ ¼ a3 þ ð6a2�0 þ 4a1�1 þ 2a0�2Þ‘
þ ð12a1�2

0 þ 10a0�0�1Þ‘2 þ 8a0�
3
0‘

3; (5)

a3 ¼ �a3 þ 8

3
�2C3

A

�
1

�
þ 6‘

�
: (6)

CF ¼ ðN2
c � 1Þ=ð2NcÞ and CA ¼ Nc denote the eigenval-

ues of the quadratic Casimir operators for the fundamental
and adjoint representations, respectively, of the color
SUðNcÞ gauge group; Nc ¼ 3 in QCD.

The IR divergence is an artifact of the strict perturbative
expansion of VQCDðrÞ in �S; beyond naive perturbation

theory, this IR divergence is absent and regularized by
the energy difference between color-singlet and octet in-
termediate states. The difference between VQCDðrÞ and its

perturbative expansion ½VQCDðrÞ�PT can be treated system-

atically within the effective field theory ‘‘potential non-
relativistic QCD’’ [21]. [½VQCDðrÞ�PT is obtained from

VQCDðrÞ if we replace �VðqÞ in Eq. (1) by �PT
V ðqÞ.] This

difference,

½VQCDðrÞ�US ¼ VQCDðrÞ � ½VQCDðrÞ�PT; (7)

is given by contributions of ultrasoft (US) degrees of free-
dom [22]. In the region r � ��1

QCD, the leading-order con-

tribution to ½VQCDðrÞ�US in double expansion in �S and

logð�SÞ is readily obtained from the result of [8] as

½VQCDðrÞ�US;LO ¼ CFC
3
A�

4
S

24�r

�
1

�
þ 8 logð�rÞ � 2 logðCA�SÞ

þ 5

3
þ 6�E

�
: (8)

Upon Fourier transform, 1=� and log� terms of Eqs. (6)
and (8) cancel each other. In general, at r <��1

QCD, one may

perform an operator-product expansion of ½VQCDðrÞ�US as a
multipole expansion in r. In this case, nonperturbative
contributions to ½VQCD�US are parametrized in the form of

nonlocal gluon condensates.
We may classify �a3 in (6) according to the powers of the

number of flavors nl of the internal quarks:

�a 3 ¼ n3l �a
ð3Þ
3 þ n2l �a

ð2Þ
3 þ nl �a

ð1Þ
3 þ �að0Þ3 : (9)

The purpose of this Letter is to compute �að0Þ3 .

Let us describe our calculational procedure. At tree level
and at one-loop order, computation of ½VQCDðrÞ�PT is more

or less trivial. The two-loop correction to ½VQCDðrÞ�PT is

expressed in terms of five master integrals, all of which are
expressed in terms of the � function and rational functions
of � [23]. Hence, we may easily obtain expansion coeffi-
cients in � necessary for the three-loop computation.
We first generate three-loop Feynman diagrams for the

scattering of static quark and antiquark using GRACE [24]
and QGRAF [25]. There are about 20 000 diagrams; we
confirmed that the diagrams generated by the two pro-
grams coincide. The next step is to eliminate iterations of
the lower-order potential at the diagram level, which in-
volves rearrangements of color factors associated with
diagrams; we use the general algorithm developed in
[26]. This procedure eliminates diagrams that contain
pinch singularities. Subsequently, the color factor for
each diagram is simplified using the program COLOR pro-
vided in [27].
Our computation is carried out in Feynman gauge. The

loop integrals are classified according to different numer-
ators and denominators. At an early stage of the computa-
tion, we identify those integrals which are trivially zero in
dimensional regularization and eliminate them. To reduce
the labor of the computation, we collect integrands with a
common denominator and cancel terms in the numerator
against the denominator as much as possible, by appropri-
ately expressing the numerator by combinations of factors

PRL 104, 112003 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 MARCH 2010

112003-2



in the denominator. After these processes, we were able to
express the three-loop correction to ½VQCDðrÞ�PT in terms of

about 1700 integrals.
Following the standard procedure of contemporary loop

computations, these integrals are expressed in terms of a
small set of integrals (master integrals) through the reduc-
tion procedure using integration-by-parts (IBP) identities
[28]. To carry out the reduction efficiently, we use the
LAPORTA algorithm [29]. In addition to known techniques,

we implement some improvement to this reduction algo-
rithm. For instance, we temporarily assign a numerical
value to D and reduce integrals to simpler ones using
IBP identities. The reduction process completes swiftly
since manipulation of numerics is considerably faster
than symbolic manipulation involving rational functions
of D. We retrace the reduction process and identify a
minimal set of necessary IBP identities for this reduction.
Then we reprocess the reduction (without assigning a
numerical value to D) using the minimal set of identities,
after rearranging the order of these identities optimally. In
the end, the three-loop correction to ½VQCDðrÞ�PT is ex-

pressed in terms of 40 master integrals. All the processes
are automatized, and the integrals are reduced one after
another. The reduction processes required roughly 3weeks’
CPU time of a contemporary desktop computer with 5 GB
memory.

Out of 40 master integrals, 17 integrals can be expressed
in terms of the � function and rational functions of D. The
rest of the master integrals are expanded in Laurent series
in �, and their expansion coefficients are evaluated analyti-
cally if possible and numerically otherwise. (For some
expansion coefficients, analytical values are available in
the literature.) Numerical evaluation of the expansion co-
efficients are carried out in two ways: (a) by evaluating
Feynman parameter integrals using sector decomposition
and (b) by evaluating integrals in Mellin-Barnes represen-
tation. The typical relative accuracy in the numerical
evaluation of the expansion coefficients is of the order
of 10�5. Details of our computation will be described
elsewhere.
Our final result reads

�a ð0Þ
3 ¼ ½502:22ð12Þ�C3

A þ ½�136:8ð14Þ� d
abcd
F dabcdA

NA

;

(10)

with the color factor dabcdF dabcdA =NA ¼ NcðN2
c þ 6Þ=48

[27]. For completeness, we combine our result with that
of [11] and list the numerical values of �a3, defined in
Eq. (6), for Nc ¼ 3 and nl ¼ 3; 4; 5 in Table I.
At every stage of the computation we performed numer-

ous cross-checks. At every step we have written (at least)
two independent programs and checked that results mutu-
ally agree. We derived many relations among different
types of integrals and checked that, when the integrals
are expressed by master integrals, these relations are sat-
isfied. Renormalizability of ½VQCDðrÞ�PT with the known

renormalization constant of the strong coupling constant,
as well as reproduction of known IR divergence, provides

nontrivial cross-checks. We have reproduced �að3Þ3 , �að2Þ3 , and

the coefficient of C2
F in �að1Þ3 [11] analytically. We also

computed the coefficients of C2
A, CACF, and

dabcdF dabcdF =NA in �að1Þ3 numerically and confirmed that our

results agree with those of [11] within the estimated errors.
The last comparison provides a strong cross-check on the
correctness and accuracy of our result (10), since the
expansion coefficients necessary to compute the result

(10) are common to the ones necessary to compute �að3Þ3 ,

�að2Þ3 , �að1Þ3 , except for two coefficients.

Now we compute VQCDðrÞ, as given by the sum of

½VQCDðrÞ�PT and ½VQCDðrÞ�US, including all the corrections

up to Oð�4
sÞ and Oð�4

s log�SÞ. Namely, we use the series
expansion (2) up to n ¼ 3 for the former and Eq. (8) for the
latter.

TABLE I. Numerical values of �a3, defined in Eq. (6), for
different values of nl.

nl 3 4 5

�a3 5199(3) 3160(3) 1460(3)

FIG. 1 (color online). VQCDðrÞ ¼ ½VQCDðrÞ�PT þ ½VQCDðrÞ�US
up to Oð�4

sÞ and Oð�4
s log�SÞ. (a) In the toponium region, three

lines, corresponding to � ¼ 25, 50, and 100 GeV, are plotted
with nl ¼ 5. (b) Comparison with the lattice computations in the
quenched approximation [15,30]. We set nl ¼ 0. The distance
region corresponds roughly to the size of �ð1SÞ state.
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In Fig. 1(a) we plot our prediction for VQCDðrÞ in the

distance region corresponding to (would-be) toponium
states. Three lines are plotted, corresponding to � ¼ 25,
50, and 100 GeV, with nl ¼ 5 and �SðMZÞ ¼ 0:1176. We
added a constant to each prediction such that it takes a
common value at r ¼ 0:01 GeV�1. The differences of the
three lines are hardly visible, showing stability of the
prediction.

In Fig. 1(b) we compare our prediction with the lattice
data in the quenched approximation [15,30]. Accordingly

we set nl ¼ 0. We used the central value of r0�
3-loop
MS

¼
0:574� 0:042 [19] to fix the relation between the lattice

scale and �
3-loop
MS

, where r0 denotes the Sommer scale.

Hence, the only adjustable parameters in our comparison
are r-independent constants to be added to the potentials,
whose values are chosen such that all the potentials co-

incide at r�
3-loop
MS

¼ 0:1. It is customary to interpret r0 ¼
0:5 fm when comparing this scale to one of the real world.
Roughly, the potential shape in the displayed range r <
r0=2 accounts for formation of the �ð1SÞ state. We plot

three lines with the scale choices �3-loop
MS

=� ¼ 0:14, 0.07,

and 0.035. [The corresponding values of �Sð�Þ are 0.216,
0.165, and 0.135, respectively.] There is a small but visible
dependence on the scale. The level of agreement with the
lattice data shows that our prediction of the potential at this
order is good enough to warrant quantitative description of
the nature of the �ð1SÞ state. We confirm the observation
that, as we include higher-order corrections, agreement of
the perturbative prediction and lattice computations im-
proves up to larger distances. According to the analyses in
[14,19], we anticipate that the agreement would get even
better if we resum logarithms via RG, or appropriately
choose the scale � as a function of r, provided that the
IR renormalon is subtracted.

The work of Y. S. is supported in part by Grant-in-Aid
for scientific research No. 20540246 from MEXT,
Japan.

Note added.—Shortly after we announced our result, a
paper by A.V. Smirnov et al. [31] appeared, which per-

formed an independent computation of �að0Þ3 . The results of

the two Letters agree within the errors.
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