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We compute the three-loop corrections to the potential of two heavy quarks. In particular, we consider
in this Letter the purely gluonic contribution which provides, in combination with our previous fermion

corrections, the complete answer at three loops.
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The potential between two heavy quarks constitutes a
fundamental quantity in quantum chromodynamics
(QCD). It enters in a variety of physical processes like
the threshold production of top quark pairs and the de-
scription of charm and bottom quark bound states.
Furthermore, it is crucial for the understanding of funda-
mental quantities of QCD, such as confinement. (See
Ref. [1] for a recent review.)

The idea to describe a bound state of heavy colored
objects in analogy to the well-established hydrogen atom
goes back to the middle of the 1970s [2]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
were evaluated in the works [3,4]. It took almost 20 years
until the next order became available [5-7], which, at that
time, was a heroic enterprise. The two-loop corrections
turned out to be numerically quite important, which trig-
gered several investigations to go beyond. At the end of
2009, the fermionic corrections to the three-loop static
potential were completed [8—10]. In this Letter we report
on the pure gluonic part, which completes the three-loop
corrections to the static potential.

We present our results for the static potential in momen-
tum space where it takes the form
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Here, C4 = N, and Cr = (N2 — 1)/(2N,) are the eigen-
values of the quadratic Casimir operators of the adjoint and
fundamental representations of the SU(N,) color gauge
group, respectively, and «, denotes the strong coupling
in the MS scheme. The one- and two-loop coefficients a;
[3,4] and a, [5-7,11] are given in Eq. (4) of Ref. [8], where
the higher order terms in €, necessary for the three-loop
calculation, are also presented. In Eq. (1) we identify the
renormalization scale w? and the momentum transfer .
The complete dependence on u can easily be restored with
the help of Eq. (2) of Ref. [8].

A new feature of the three-loop corrections to V(|g|) is
the appearance of infrared divergences [12], which is
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represented by the In(u?/g?) term in Eq. (1). It has been
evaluated for the first time in Refs. [13,14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons interact
with the heavy-quark antiquark bound state. An explicit
result can be found, e.g., in Ref. [14], where the cancella-
tion has been demonstrated in order to arrive at the mea-
surable energy levels of the heavy-quark system. We note
in passing that higher order logarithmic contributions to
the infrared behavior of the static potential have been
computed in Refs. [16,17].

Before presenting our results for as, let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some
sample diagrams up to three-loop order are shown in
Fig. 1. In the next step they are processed further with
Q2E and EXP [19,20], where a mapping to the diagrams of
Fig. 2 is achieved. The mapping to two-point functions is
possible since the only dimensionful quantity in our prob-
lem is given by the momentum transfer between the quark
and the antiquark. Although there is only one mass scale in
our problem, technical complications arise from the simul-
taneous presence of static lines (zigzag lines) and relativ-
istic propagators (solid lines), which significantly increases
the complexity of the reduction to master integrals. For this
task we employ the program package FIRE [21] in order to
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FIG. 1 (color online). Sample diagrams contributing to the
static potential at tree-level, one-, two-, and three-loop order.
Solid lines and curly lines represent quarks and gluons, respec-
tively. In the case of closed loops the quarks are massless; the
external quarks are heavy and treated in the static limit.
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FIG. 2 (color online). One-, two-, and three-loop diagrams.

The solid line stands for massless relativistic propagators and the
zigzag line represents static propagators.

achieve a reduction to about 100 basic integrals, so-called
master integrals. The latter have to be evaluated in an
expansion in €, which we achieve with the help of the
Mellin-Barnes method (see, e.g., Refs. [22-25]). We man-
aged to compute all the necessary coefficients of the e
expansion of the master integrals analytically with the
exception of terms of order €' of the three diagrams shown
in Fig. 3. Results for the master integrals as well as more
details on their evaluation will be published elsewhere. As
a crucial tool providing very important numerical cross-
checks of the analytical results we applied the program
FIESTA [26], which is a convenient and efficient implemen-
tation of the sector decomposition algorithm. The color
factors of the individual Feynman diagrams have been
computed with the program COLOR [27].

In our calculation we allowed for a general gauge pa-
rameter ¢ in the gluon propagator. For individual diagrams
we observe the appearance of terms up to £°. We have
checked that the coefficients of the £” terms with n = 2, 3,
4,5, and 6 are zero.

In order to present our results we decompose the three-
loop coefficient in the form

az = a(3)n? + (1(2)712 + a( )n + a(o) 2)

where n; is the number of light quarks, and the first three
coefficients on the right-hand side have been presented in
Ref. [8] [see Eq. (6)]. Whereas for the fermionic contribu-
tions there are seven different color structures, in the case
of ago) there are only two. Note that the result of all color
structures containing a factor C are generated by itera-
tions 0f lower-order contributions and thus do not contrib-

ute to ay . o Diagrammatically, such contributions are easily
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FIG. 3 (color online). Three-loop master integrals where the
O(e) part is only known numerically. The label “—i0” indicates
that instead of the static propagator 1/(py + i0) there is the
propagator 1/(p, — i0).

identified since the corresponding Feynman integrals con-
tain so-called pinch contributions of the form 1/(pq +

i0) X 1/(py — i0), where p, is the zeroth component of a
loop momentum. Our result for ago) reads
© dabcddahcd
ay’ = 502.24(1)C3 — 136. 39(12)N—. 3)

A

Similarly to the fermionic contribution, new color invari-
ants appear which can be traced back to Feynman diagrams
as the third one in the second row of Fig. 1. Expressed in
terms of N, one has d%<?d<d/N, = (N3 + 6N,)/43.
The coefficient of d4°?d4>d has already been presented
in Refs. [28,29], but the coefficient of the Ci term is new.

Let us now discuss the numerical effect of the three-loop
contribution to the static potential. Inserting the numerical
results for the coefficients a; in Eq. (1) we obtain
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where u? = > has been adopted in order to suppress the
infrared logarithm and the ellipses denote higher order
terms in «. The term “209” in the three-loop coefficient
receives a large contribution (“211°") from the Cf‘ term
whereas the new color structure only contributes with a
coefficient “—2.”” From Eq. (4) we observe at one-, two-,
and three-loop order a large screening of the nonfermionic
contributions by the n; terms which is most prominent in
the case of az for n; = 5. Here the difference between ago)
and the fermionic contribution is one order smaller than the
individual pieces.

In Table I we show the numerical evaluation of the
square bracket of Eq. (4) for the charm, bottom, and top
quark case, i.e., for n; = 3, 4, and 5, adopting the appro-
priate values of «,. For charm the three-loop corrections
are almost as big as the one- and two-loop contributions,
whereas for the bottom the three-loop contribution is al-
ready a factor of 4 smaller than the two-loop one. In the
case of the top quark, one observes a good convergence:
the three-loop term is already a factor of 10 smaller than
the two-loop counterpart.

As already mentioned above, V(|g]) itself is not a physi-
cal quantity. Hence, let us consider the ground state energy
E, of a heavy quarkonium system which has been eval-
uated to the third order in perturbation theory (PT) in
Ref. [30], where the contribution from a; has been kept
unevaluated. We are now in a position to complete the
numerical analysis. It is convenient to write the perturba-
tive contribution to E; in the form
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TABLE 1. Radiative corrections to the potential V(|G|) where
the tree-level result is normalized to 1 [cf. Eq. (4)]. In the second
column we also provide the numerical value of « corresponding
to the soft scale where u = m,a, (m, being the heavy-quark
mass).

n al™ One loop Two loop Three loop
3 0.40 0.2228 0.2723 0.1677
4 0.25 0.1172 0.08354 0.02489
5 0.15 0.05703 0.02220 0.002485
— (1) (2) (3)
EXT =ES + 8E) + 8E” + 8E7 + -+, (5)
with the Coulomb energy E{ = —Cra2m,/4. m, is the

heavy-quark mass and the superscript in brackets indicates
the order in perturbation theory. Adopting for the renor-
malization scale the choice g = Cra (ug)m,, we obtain

SEY | parm = @EC[129.79 + 5.241|,, + 15.297 In(a,)],
6E(13)|b0ttom =
SEY|op = @IES[83.386 + 1.473|,, + 15.297 In(a,)],

(6)

a3 ES[104.82 + 3.186),, + 15.297 In(a)],

where the contribution from a; has been marked sepa-
rately. One observes that the numerical effect amounts to
between 1% and 4% of the nonlogarithmic constant.

Finally, it is interesting to compare our results with the
predictions obtained on the basis of certain assumptions on
the perturbative expansion. In Ref. [31] a Padé approxima-
tion in the coupling constant has been performed, whereas
the findings of Ref. [32] are based on renormalon studies.
For ago) /43 they predict 313 and 292, respectively, which
overshoots the exact result by 40%—-50%.

More recently, a detailed comparison of the perturbative
result with lattice simulations has been performed [33]
with the goal of extracting ago)‘ After transforming the
result of Ref. [33] to momentum space using the formulas
provided in their appendix, one obtains 202 = ago) /4 =
337. Thus the lower limit of the (relatively big) interval
covers the exact result.

In conclusion, in this Letter the three-loop corrections to
the static potential have been completed by evaluating the
gluonic contribution. Our main result can be found in
Eq. (3), where the three-loop coefficients are given for
general color structure. Numerical sizable corrections are
observed for the nonfermionic contributions which are
partly canceled by the fermionic corrections evaluated in
Ref. [8].

Let us stress that the static potential constitutes a fun-
damental quantity of QCD. It represents a building block in
many physical quantities such as the determination of the
bottom quark mass from the Y'(15) bound state or the third-
order correction to top quark threshold production cross

section at a future electron positron linear collider, which
would result in the most precise value for the top quark
mass. The static energy is also a crucial object when
comparing perturbation theory and lattice simulations
(see, e.g., Refs. [33-36]). We also want to mention the
extraction of the strong coupling constant from lattice
simulations where again the static potential and in particu-
lar a5 plays an important role [37,38].
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discussions and communications. We are grateful to
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TR 9 “Computational Particle Physics” and RFBR, Grant
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Note added.—While finishing this Letter we became

aware of the work by Anzai et al. [39], where a(30) has
also been computed. We agree with their Eq. (10); how-
ever, we obtain a better precision.
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