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We present the necessary condition for complete frequency synchronization of phase-coupled oscil-

lators in network structures. The surface area of a set of sites is defined as the number of links between the

sites within the set and those outside the set. The necessary condition is that the surface area of any set of

cN (0< c< 1) oscillators in the N-oscillator system must exceed
ffiffiffiffi
N

p
in the limit N ! 1. We also

provide the necessary condition for macroscopic frequency synchronization. Thus, we identify networks

in which one or both of the above mentioned types of synchronization do not occur.

DOI: 10.1103/PhysRevLett.104.108701 PACS numbers: 89.75.Hc, 05.45.Xt, 89.75.Fb

All systems showing collective synchronization com-
prise a network that consists of elements and interactions
between them [1]. Generally, synchronized dynamics de-
pend on the structure of the network. Therefore, it is
important to reveal how the structure of the network causes
effects on the synchronized dynamics. Once this is re-
vealed, it will be possible to coordinate synchronization
through the construction of the appropriate network.
Conversely, it will also be possible to predict the network
structure by observing the synchronized dynamics [2].

The synchronized dynamics for some networks have
been studied theoretically using the Kuramoto model [3],
which is the most representative model of a phase-coupled
oscillator. Here, a site in a given network refers to an
oscillator, while links between pairs of sites are referred
to as interactions. One of the most important requirements
is to confirm the existence of frequency synchronization in
an infinite system. Frequency synchronization is observed
in global networks [3], random networks [4], scale-free
networks [5], and small-world networks [4]. Frequency
synchronization is also observed in two- and three-
dimensional cubic lattices [6,7]. However, it has been
theoretically proven that there is no synchronized solution
for one-dimensional lattices [8] when the natural frequen-
cies are independent random variables chosen according to
a distribution with a finite variance.

Although it is known that some networks show synchro-
nization, as described above, the conditions necessary for a
network structure to show synchronization have not been
clarified thus far. The previously reported parameters for
network structure characterization cannot be used for de-
termining the exact conditions for synchronization in the
present study. Let us consider an example. In Watts-
Strogatz (WS)-type small-world networks [4], a small
characteristic path length helps accelerate the synchroni-
zation process, as the critical coupling strength decreases
with a decrease in the characteristic path length. However,
this does not imply that a small characteristic path length is
the necessary condition for synchronization.

In this Letter, we discuss the necessary condition that a
network structure should satisfy for frequency synchroni-

zation of general phase-coupled oscillators. We introduce a
new parameter called surface area to describe critical net-
work structure for synchronization. On the basis of the
condition, we investigate the characteristics of various
networks and identify networks in which frequency syn-
chronization is not observed.
We consider a phase-coupled oscillator system de-

scribed as

d�i
dt

¼ !i þ K
XN
j¼1

Aijhð�j � �iÞ; (1)

where �i and !i are the phase and the natural (uncoupled)
frequency of oscillator i, respectively. N represents the
number of oscillators. The positive constant K denotes
the coupling strength. The time variable, denoted by t, is
scaled by the characteristic time, and all the variables are
dimensionless. We assume that the natural frequencies are
randomly chosen for a certain distribution function gð!Þ
with a finite variance �2. The interaction hð�Þ is assumed
to be a continuous odd periodic function. Note that hð�Þ is a
bounded function. We denote the structure of the interac-
tion network by an adjacency matrix A, where Aij ¼ 1 if

oscillators i and j interact with each other, and Aij ¼ 0

otherwise. The diagonal elements are Aii ¼ 0. We assume
that the marix is symmetric, i.e., Aij ¼ Aji. When the

interaction term is a sinusoidal function, that is, hð�Þ ¼
sinð�Þ, Eq. (1) represents the Kuramoto oscillator [3].
Coupled frequency is defined in terms of the time-

averaged phase velocity as follows:�
d�i
dt

�
t
¼ lim

T!1
1

T

Z T

0

d�i
dt

dt: (2)

If oscillators i and j interact with each other and satisfy the

condition hd�idt it ¼ hd�jdt it, they are said to be mutually en-

trained. We define a cluster as a group of sites that are
mutually entrained. The order parameter for frequency
synchronization is defined by

r ¼ Ns

N
; (3)
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where Ns is the size of the largest cluster in the system. We
denote the state with r ¼ 1 as the complete synchroniza-
tion (CS) state and that with 0< r < 1 as the macroscopic
synchronization (MS) state for an infinite system.

We give the necessary condition for CS of network
structures at a finite K. We use the concept of the
Brownian bridge, which has been used to prove that there
is no synchronized solution for a one-dimensional lattice
[8]. First, we obtain the long-time average of the terms on
both sides of Eq. (1),�

d�i
dt

�
t
¼ !i þ K

X
j

Aijhhð�j � �iÞit: (4)

By adding up N equations, we obtain

XN
i¼1

�
d�i
dt

�
t
¼ XN

i¼1

!i: (5)

Because hhð�j � �iÞit is an odd function and Aij ¼ Aji,

there are no interaction terms in Eq. (5). Next, we choose
cN arbitrary sites from N sites, where c is a constant in the
range 0< c< 1. Summation of the cN equations given by
Eq. (4) gives

X
i2fcNg

�
d�i
dt

�
t
¼ X

i2fcNg
!i þ K

X
surfaceðfcNgÞ

hhð�j � �iÞit; (6)

where the label fcNg denotes the set of cN sites that we
have chosen. surfaceðfcNgÞ indicates the set of links be-
tween the sites in fcNg and other sites outside fcNg; this is
conceptually shown in Fig. 1. The interactions in fcNg
mutually cancel out, while those at the surface of fcNg
remain. The difference between Eq. (5) and 1=c times
Eq. (6) is given as follows:

XN
i¼1

�
d�i
dt

�
t
�1

c

X
i2fcNg

�
d�i
dt

�
t
¼
�XN
i¼1

!i�1

c

X
i2fcNg

!i

�

�1

c
K

X
surfaceðfcNgÞ

hhð�j��iÞit:

(7)

When all oscillators are assumed to have the same

frequency hd�idt it ¼ �, the left-hand side (LHS) of Eq. (7)

reduces to zero:

0 ¼
�XN
i¼1

!i � 1

c

X
i2fcNg

!i

�
� 1

c
K

X
surfaceðfcNgÞ

hhð�j � �iÞit:

(8)

Note that Eq. (8) is true for any set of fcNg when CS
occurs. The term fPN

i¼1 !i � 1
c

P
i2fcNg!ig � Xðf!igÞ is a

random variable determined from the natural frequencies.
The exact variance of Xðf!igÞ given by ð1c � 1Þ�2N can be

calculated. The standard deviation of Xðf!igÞ, which rep-

resents a typical value of Xðf!igÞ, is of the order of
ffiffiffiffi
N

p
. For

Eq. (8) to have a solution for a finite K in the limit N ! 1,
the summation of the interaction terms must be of the order

of
ffiffiffiffi
N

p
. Because h is a bounded function, the number of

links in surfaceðfcNgÞ, which is denoted by SðfcNgÞ, must

be greater than
ffiffiffiffi
N

p
. We call SðfcNgÞ the surface area of the

set fcNg. Thus, the necessary condition for CS [9] is given
by

lim
N!1

SðfcNgÞffiffiffiffi
N

p > 0 for any set fcNg: (9)

Here, we can give a physical explanation for the neces-
sary condition for synchronization as follows: The LHS of
Eq. (7) represents the difference between the average
coupled frequency over the entire network and that in the
set fcNg. The term Xðf!igÞ represents the difference be-
tween the average natural frequency over the entire net-
work and that in the set fcNg. The interactions in
surfacefcNg compensate for this difference and reduce
the aforementioned difference between the average
coupled frequencies. Consequently, for the entire system
to be synchronized, the surface area of any set fcNg must

be greater than
ffiffiffiffi
N

p
.

The exact necessary condition for CS is given by Eq. (9).
To confirm whether the system satisfies the necessary
condition, we must search for a set fcNg that has the
minimum surface area. Let us investigate various networks
on the basis of this condition, as shown in Fig. 2. The
minimum surface area (Smin) of the one-dimensional lattice
is 2. Hence, CS is not achieved in the one-dimensional

lattice. Smin for the two-dimensional lattice is 22
ffiffiffiffiffiffiffi
cN

p
, and

the necessary condition is satisfied. We employ the WS
model [10] as an example of a small-world network. The
WS model can be described as follows: We first design a
one-dimensional ring and connect each site to the first
through the kth neighbors, where k is a positive integer.
Next, with a probability p, we randomly rewire each link.
The small-world network is realized for a finite p, which is
close to zero. Here, we choose cN sites that are mutually
neighboring along the one-dimensional ring in order to
minimize the surface area of a set consisting of cN sites.
The surface area is approximately expressed in terms of the
number of rewirings, which consist of outgoing and in-

FIG. 1 (color online). Definition of surface and surface area.
cN (0< c< 1) sites are chosen from N sites in a network. The
surface of a set fcNg is defined as the set of links between the
sites within fcNg and those outside fcNg. The surface area is
defined as the number of links at the surface.
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coming wires, as follows: SðfcNgÞ ¼ cNkpð1� cÞ þ ð1�
cÞNkpc ¼ 2cð1� cÞNkp. We choose a small c to mini-

mize SðfcNgÞ and to ensure that Smin � cNkp. The results
show that the WS small-world network satisfies the neces-
sary condition for CS. In the Sierpinski gasket, Smin is 4,
and hence, CS is not achieved. Thus, the proposed neces-
sary condition can be effectively used to identify network
systems in which CS does not occur.
We also derive the necessary condition for MS, for

which the order parameter r satisfies the condition 0< r <
1, similar to the case for CS. To discuss nontrivial MS, we
append the assumption that gð!Þ has no delta-function sin-
gularity. First, we add up rN equations given by Eq. (4) and
obtain the following equation:

X
i2frNg

�
d�i
dt

�
t
¼ X

i2frNg
!iþK

X
surfaceðfrNgÞ

hhð�j��iÞit: (10)

Next, we choose cN (0< c< r) arbitrary sites from the rN
sites. Through the summation of cN equations, which are
part of the rN equations, we obtain

X
i2fcNg

�
d�i
dt

�
t
¼ X

i2fcNg
!iþK

X
surfaceðfcNgÞ

hhð�j��iÞit: (11)

From Eq. (10) and (11), we obtain

1

r

X
i2frNg

�
d�i
dt

�
t
�1

c

X
i2fcNg

�
d�i
dt

�
t
¼
�
1

r

X
i2frNg

!i�1

c

X
i2fcNg

!i

�
þK

�
1

r

X
surfaceðfrNgÞ

hhð�j��iÞit�1

c

X
surfaceðfcNgÞ

hhð�j��iÞit
�
: (12)

When all the oscillators in frNg are assumed to have the
same frequency hd�idt it ¼ �, the LHS of Eq. (12) reduces to
zero. Under this assumption, Eq. (12) can be rewritten as
follows:

0 ¼
�
1

r

X
i2frNg

!i � 1

c

X
i2fcNg

!i

�

� 1

c
K

X
surfaceðfcNgÞj2frNg

hhð�j � �iÞit

þ K

�
� 1

c

X
surfaceðfcNgÞj=2frNg

hhð�j � �iÞit

þ 1

r

X
surfaceðfrNgÞ

hhð�j � �iÞit
�
: (13)

Note that we classify the links in surfaceðfcNgÞ into two
groups as follows: (i) surfaceðfcNgÞj2frNg, where a site i in
fcNg is connected with a site j outside fcNg and within
frNg. (ii) surfaceðfcNgÞj=2frNg, where a site i within fcNg is
connected with a site j outside frNg. Equation (13) holds
for any set fcNg when synchronization occurs in frNg.
Here, we evaluate a typical value of f1r

P
i2frNg!i �

1
c

P
i2fcNg!ig � Xrðf!igÞ. When the rN equations are

chosen independently of !i, the exact standard deviation

of Xrðf!igÞ is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1c � 1

rÞ�2N
q

. Even when the rN
equations are chosen from the equations of which!i is in a
limited range, the standard deviation is of the order of

ffiffiffiffi
N

p
.

There is no set frNg that has the smaller typical value of

Xrðf!igÞ than
ffiffiffiffi
N

p
. Therefore, for Eq. (13) to have a solu-

tion in the limit N ! 1, the summation of the interactions
must be of the order of

ffiffiffiffi
N

p
.

Let us recollect the interactions that help reduce the
difference between the average coupled frequencies in
frNg and fcNg. It is apparent that the interactions in
surfaceðfcNgÞj2frNg are suitable for this purpose. Thus, it

is concluded that surfaceðfcNgÞj2frNg mainly contributes to

reducing the LHS of Eq. (12) to zero. It is impossible for
synchronization to occur in frNg when the summation of

surfaceðfcNgÞj2frNg is not of the order of
ffiffiffiffi
N

p
. Thus, the

necessary condition for MS is given by

lim
N!1

SðfcNgÞj2frNgffiffiffiffi
N

p > 0 for any fcNg (14)

in the cluster frNg, where SðfcNgÞj2frNg represents the

number of links in surfaceðfcNgÞj2frNg.
Now, we discuss the information provided by the neces-

sary condition for MS. On the basis of the proposed
condition, we can identify networks in which MS does
not occur. If there is no set frNg that satisfies the necessary
condition for a network, the network does not show MS.
Let us investigate various examples. In the case of the one-
dimensional lattice and the Sierpinski gasket, no set frNg
that satisfies the necessary condition is found. Hence,
neither CS nor MS occurs in these networks. On the other
hand, in random networks and small-world networks, we
can easily find a set frNg that satisfies the necessary

FIG. 2 (color online). Minimum surface area Smin for various
networks. Smin is (a) 2 in a one-dimensinal lattice, (b) 22

ffiffiffiffiffiffiffi
cN

p
in a

square lattice, (c) cNkp in a WS-type small-world network, and
(d) 4 in the Sierpinski gasket.
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condition. These results are consistent with those reported
in previous studies [4,6,8].

Here, we present an example in which the necessary
condition for MS is satisfied, while that for CS is not. We
employ the connected caveman graph [11] as an example.
The connected caveman graph is obtained as follows: First,
N=ðkþ 1Þ complete graphs or caves are prepared. Each
cave consists of kþ 1 sites. A link in each cave is rewired
to connect the cave with its neighbor, as shown in Fig. 3. It
is assumed that k satisfies the condition k� N. If a set frNg
is assumed to be a cave, the necessary condition for MS is
satisfied, as the surface of any set fcNg is of the order of N.
On the other hand, CS is impossible, as the surface area of
each cave is 2. Thus, the connected caveman graph shows
only MS. When k satisfies the condition k� N� (0 � �<
1), neither CS nor MS occurs; this is because we cannot
find the set frNg that satisfies the necessary condition for
MS.

Finally, we investigate the sufficiency of the proposed
condition for MS numerically. We introduce a network
model, in which the minimum surface area can be con-
trolled simply. The definition is explained as follows: First,
we prepare a one-dimensional ring, in which the nearest-
neighbor pairs are all connected to each other. Next, we
randomly add N links that connect kth-neighbor pairs,
where k is randomly chosen from a uniform distribution

onN� < k < N�0
(0<�<�0 � 1).� and�0 are parame-

ters to control the minimum surface area. A set of cN sites
that are mutually neighboring along the ring has the mini-

mum surface area, which satisfies N� � SðfcNgÞ � N�0
.

We simulate the synchronized dynamics of the Kuramoto
oscillators on this network when gð!Þ is assumed to be the
Gaussian distribution centered about 0 with unit variance.
Figure 4 shows the behavior of r for (a) N0:5 < k< N0:6

and (b)N0:2 < k <N0:3. While MS disappears gradually as
N is increased for the case (b), MS transition occurs even
when N is increased for the case (a). We numerically
confirm that MS transition occurs for �0 >� � 0:5. The
details will be presented in a forthcoming paper [12]. This
result indicates a possibility that the proposed condition is
both necessary and sufficient.

In this Letter, the necessary conditions for CS and MS
are provided. At present, there are no reported examples of
networks that satisfy the proposed condition but do not
show synchronization. It is an open problem whether the
proposed conditions are exactly necessary and sufficient.
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Rev. Lett. 96, 114102 (2006); M. Timme, Phys. Rev. Lett.
98, 224101 (2007).

[3] Y. Kuramoto, Chemical Oscillations, Waves and
Turbulence (Springer, Berlin, 1984).

[4] H. Hong, M.Y. Choi, and B. J. Kim, Phys. Rev. E 65,
026139 (2002); F. Mori and T. Odagaki, Physica
(Amsterdam) 238D, 1180 (2009).

[5] T. Ichinomiya, Phys. Rev. E 70, 026116 (2004); Y. Moreno
and A. F. Pacheco, Europhys. Lett. 68, 603 (2004).

[6] H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, Prog.
Theor. Phys. 77, 1005 (1987).

[7] T. Aoyagi and Y. Kuramoto, Phys. Lett. A 155, 410
(1991); M. Bahiana and M. S. O. Massunaga, Phys.
Rev. E 49, R3558 (1994).

[8] H. Daido, Phys. Rev. Lett. 61, 231 (1988); S. H. Strogatz
and R. E. Mirollo, J. Phys. A 21, L699 (1988); S. H.
Strogatz and R. E. Mirollo, Physica (Amsterdam) 31D,
143 (1988); J. A. Acebron, L. L. Bonilla, C. J. P. Vicente,
F. Ritort, and R. Spigler, Rev. Mod. Phys. 77, 137 (2005).

[9] CS also needs the condition that gð!Þ must be defined in a
finite domain.

[10] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440
(1998).

[11] D. J. Watts, Am. J. Sociology 105, 493 (1999).
[12] F. Mori (unpublished).

FIG. 3. Schematic of the connected caveman graph consisting
of N=ðkþ 1Þ complete graphs or caves. A link in each cave is
rewired to connect the cave with its neighbor.
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FIG. 4 (color online). The order parameter r for the Kuramoto-
oscillator system on our network model for (a) N0:5 < k< N0:6

and (b) N0:2 < k< N0:3.
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