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We study the diffusion-annihilation process which occurs when spin ice is quenched from a high
temperature paramagnetic phase deep into the spin-ice regime, where the excitations—magnetic mono-
poles—are sparse. We find that due to the Coulomb interaction between the monopoles, a dynamical arrest
occurs, in which nonuniversal lattice-scale constraints impede the complete decay of charge fluctuations.
This phenomenon is outside the reach of conventional mean-field theory for a two-component Coulomb
liquid. We identify the relevant time scales for the dynamical arrest and propose an experiment for
detecting monopoles and their dynamics in spin ice based on this nonequilibrium phenomenon.
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Introduction.—There is intense current interest in the
study of strongly correlated systems hosting fractional-
ized excitations, in fields as diverse as magnetism, quan-
tum Hall physics, quantum computing, or even (topologi-
cal) band insulators. Such excitations arise against the
background of highly unusual ground states.

Recently, we argued that spin ice—an Ising magnet on
the pyrochlore lattice—hosts deconfined magnetic mono-
pole excitations, which result from the fractionalization of
the high-energy local dipole moments [1]. At the moment,
theoretical and experimental studies focus on predicting
and detecting signatures of these excitations [2—6].

In spin ice, the ground-state ensemble is unusual in that
it exhibits algebraic correlations without representing a
conventional critical point: this Coulomb phase—in the
sense of the deconfined phase of a U(1) gauge theory—is
a consequence of the local constraint that two spins point
into each tetrahedron and two point out. Spin ice owes its
name to this magnetic version of the Bernal-Fowler ice
rules. The Coulomb phase is characterized by an emergent
gauge field, rather than an emergent order parameter.

Violating the ice rules by flipping a spin out of a ground-
state configuration, at a cost in energy of Ay, leads to a
pair of pointlike defects in the tetrahedra the spin belongs
to. These two defects are deconfined: they can be separated
to an arbitrarily large distance at a finite cost in energy. In
the presence of long-range dipolar interactions—the model
referred to as dipolar spin ice below—such defects expe-
rience a magnetic Coulomb interaction, V(r) =
woQ2/(4mr), whence the appellation magnetic mono-
poles. Here, u is the vacuum permeability, and the mag-
netic charge Q,, = 2|fl/a,; is related to the dipole
moment of the magnetic ions || and the distance between
the centers of adjacent tetrahedra a,.

In addition, there is a Coulomb interaction of entropic
origin, with coupling strength Q2 o T. It is present even in
the nearest-neighbor model for spin ice, where the long-
range dipolar interactions are omitted and Q,, = 0.
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Spin-ice compounds, such as Ho,Ti,O; and Dy,Ti, 05,
are thus the first instances of three-dimensional magnets
which host deconfined fractionalized excitations. The most
satisfying detection experiment would consist of a direct
visualization of a magnetic monopole in bulk spin ice.
However, due to its small magnetic charge and the fact
that single quasiparticles are hard to come by in bulk
systems—even in quantum Hall physics, a single fraction-
alized charge has never been imaged—this has so far
proven beyond reach. In Ref. [1], we have shown that a
thermodynamic signature of the magnetic Coulomb inter-
action of the monopoles is the presence of a liquid-gas
transition in a magnetic-field applied in the [111] direction,
which had already been experimentally observed.

In this Letter, we study the evolution of the monopole
density after a thermal quench. The description of such
nonequilibrium dynamics is a worthwhile enterprise in
itself, as thus far there have been no instances of three-
dimensional magnets with pointlike elementary excita-
tions, and hence little motivation for their study. Work on
the quench dynamics of Coulomb liquids [7,8] shall pro-
vide the starting point for our analysis.

Our central result consists of the demonstration that the
time dependence of the monopole density after a quench
provides a distinct signature of not only their pointlike
nature but also of their magnetic Coulomb interaction.
For the nearest-neighbor model, we show that mean-field
theory applies. We analytically account for the simulated
time dependence of the density without free parameters. In
dipolar spin ice, monopole bound states appear which can
only be annihilated over an energy barrier. This leads to a
dynamical arrest at low temperatures. This is again borne
out by Monte Carlo (MC) simulations, where the funda-
mental dynamical move consists of a single spin flip as
appropriate for the large Ising spins in spin ice [2].

The outline of the Letter is as follows. We set the stage
by briefly summarizing the annihilation-diffusion physics
in Coulomb liquids. We address the new features present in
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nearest-neighbor spin ice, before presenting our results on
the dipolar system. We close with remarks on equilibration
in spin ice, and how the freezing of bound pairs could be
used as an experimental technique to achieve measurable
monopole densities at very low temperatures.
Diffusion-annihilation in Coulomb liquids.—Consider a
density n.(r) of positive and negative monopoles. As
oppositely charged pairs can annihilate, their density obeys

dni(r) _dn_(r) _
dt dt

where XK is an appropriate rate constant. In addition, the
monopoles move deterministically in response to their
mutual forces, and they are subject to diffusion in the
presence of density inhomogeneities.

Neglecting density fluctuations, one obtains the mean-
field solution

—Kn (r)n_(r), (D

ngtn_ Po

for a quench to 7 =0, where p,~ a,°> is the initial
density: the characteristic time scale for the decay is 7% ~
a3/ XK. A dynamical bottleneck can arise if there are spatial
fluctuations in the relative density of positive and negative
monopoles o(r) = [n,(r) —n_(r)]/2 (which is unaf-
fected by the symmetric annihilation process) that are not
smoothed fast enough by the motion of the monopoles. The
relevant time scale for a particle to move a distance «a is
givenby 75 ~ ao/(wE) ~ a3 /(1q), where p is the mono-
pole mobility and E ~ g/aj} is the typical strength of the
Coulomb field.

Nearest-neighbor spin ice.—This system presents a
number of special features with respect to ordinary
Coulomb liquids, which are intricately linked to the exis-
tence of the monopoles against a backdrop of spin con-
figurations in spin ice. The first is a constraint on the
possible values of o which follows from the fact that the
charge density encodes the change in the magnetization of
the sample. The boundedness of the magnetization implies
that a cube of volume L? can at most accommodate a net
charge o ~ L. Thus the long-wavelength Fourier compo-
nents are suppressed as 6(q) ~ ¢°.

The other crucial feature is that the interaction between
the defects is of a purely entropic nature, due to the
weighting of the monopole states by the number of spin
configurations they are compatible with. This interaction
has a Coulombic form

p() = 2

o
rlag’
where Q2 ~0.35 = 0.01 can, e.g., be obtained from the
probability distribution of the separation of a lone pair of
monopoles in equilibrium Monte Carlo simulations [9,15].
Whereas the strength of this interaction vanishes as 7 — 0,
the mobility u = (Q,,a2)/(67kyT) arising from the single
spin-flip Metropolis dynamics diverges, resulting in a regu-
lar 7 — O limit of 7. Here 7 is the basic unit of time, e.g.,

V(r) = kgT 3)

the inverse of the flip rate of an isolated spin in
Monte Carlo simulations. In spin ice materials, ac suscep-
tibility measurements indicate that 7 ~ 1 ms [10]. A sim-
ple estimate yields K/a} = 2g/7, where g € [3, 15]: the
probability of two oppositely charged monopoles on neigh-
boring tetrahedra is proportional to p2, and they annihilate
in the next step (after time ) if flipping the intermediate
spin restores the ice rules in both tetrahedra; this probabil-
ity, which depends on the spin correlations, is estimated by
g (1 — g being the probability that the two monopoles do
not annihilate upon flipping the intermediate spin).

Our numerical simulations of thermal quenches in
nearest-neighbor spin ice down to zero temperature are
displayed in Fig. 1. The mean-field solution shows quanti-
tative agreement with the numerics without any fitting
parameters: the fact that &(g) ~ g%, together with the
entropic Coulomb interaction, effectively suppress fluctu-
ations in the charge density.

Dipolar spin ice.—The presence of a magnetic Coulomb
interaction in spin ice leads to further features outside the
conventional picture of Coulomb liquids. First of all, a
diverging mobility is no longer compensated by a vanish-
ing potential energy, and 7, — 0 in the zero temperature
limit. This indicates that the motion of the monopoles does
not follow linear response, but rather the monopoles move
along the local field direction at the maximum speed
permitted by microscopic constraints, namely, one step in
time 7. We thus expect monopoles to find each other very
efficiently, and therefore a decay of p which is at least as
fast as in the nearest-neighbor case.

This is, however, not what happens.

The interplay between long-range interactions and con-
straints imposed by the underlying spin degrees of freedom
leads to the formation of noncontractible monopole pairs,
and the system exhibits a dynamical arrest. Indeed, not all
nearest-neighbor monopole-antimonopole pairs can be an-
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FIG. 1 (color online). Monopole density evolution in nearest-
neighbor spin ice (J/ = 1 K), after a temperature quench from
T =10 K down to T = 0 K. We simulate systems of size L =
32,64, 128, and finite size effects are absent at these time scales
(estimated error bars are smaller than the symbol size). The
analytical mean-field result Eq. (2) is shown for g = 3/4 (dashed
black line) and g = 9/10 (solid black line).

107201-2



PRL 104, 107201 (2010)

PHYSICAL REVIEW LETTERS

week ending
12 MARCH 2010

nihilated by flipping the shared spin (see Fig. 2, left-hand
panel). Annihilation then takes place only if the two mono-
poles separate and meet elsewhere in the lattice. Because
of their magnetic Coulomb interaction, there is an energy
barrier for such a process, leading to an activated Arrhenius
behavior in the monopole density relaxation.

The smallest possible energy barrier determines the long
time behavior in the system. This is given by an elementary
move where the monopoles of a bound pair annihilate
around one of the adjacent hexagonal loops in the lattice
(see Fig. 2, right-hand panel). Two of the five spin flips
involved in such a process increase the distance between
oppositely charged monopoles. A rough estimate for the
concomitant energy gaps (see Ref. [1]) is given by the
Coulomb interaction between the magnetic charges, lead-
ing to an overall energy barrier A = 1.47 K. In practice,
the energy cost of a spin flip varies due to the effectively
random fields set up by nearby bound pairs, leading to a
broadened distribution of A.

We ran extensive numerical Monte Carlo simulations
treating the long-range dipolar interaction via the Ewald
summation technique, [11] and using the waiting time
method [12] with single spin flip updates to access the
long time regime [13]. We prepare the system at equilib-
rium at the initial temperature of 10 K. We then set the
temperature to its quench value at time ¢ = 0, and we start
the measurements.

The defect density either reaches its equilibrium value
very quickly (for T = 0.4 K), or a significant deviation
from power law decay appears (7 < 0.4 K) due to the
activated behavior induced by the noncontractible bound
pairs, as illustrated in Fig. 3.

A (temperature independent) Gaussian distribution of
energy barriers A peaked around 1.47 K, with a variance
0.01 K?, leads to a probability distribution P(0) of single
hexagon decay times ®, and hence a (normalized) defect
density p(t) = 1 — [§ P(®)d®. The resulting curves p(r)
are compared with the numerical ones in the inset of Fig. 3.

FIG. 2 (color online). Example of a noncontractible
monopole-antimonopole pair (left-hand panel). The shortest
path that can lead to their annihilation is a hexagonal loop,
provided the spins along the path are oriented appropriately
(right-hand panel). One can see explicitly that the two mono-
poles must separate before they are allowed to annihilate,
resulting in a Coulomb energy barrier for the process.

Notice the good agreement over more than 20 orders of
magnitude in ¢ for the different values of the quench
temperature. Clearly, this phenomenological model cap-
tures the fundamental physics underlying the dynamical
arrest in thermal quenches.

To further confirm this scenario, we explicitly deter-
mined the density of monopoles forming noncontractible
pairs, as well as the density of contractible defect pairs
(i.e., pairs where flipping the intermediate spin lowers the
number of defects in the system). The result is illustrated in
Fig. 4 for a given quench temperature. One can see that the
initial decay ends when there are essentially no contracti-
ble pairs left in the system (magenta curve falling below
1/N,, where N, = 8L3 is the total number of tetrahedra in
the lattice). From thereon, the total defect density is essen-
tially given by monopoles forming noncontractible pairs.

The defect density decay approaching the plateau is
captured by a diffusion process where oppositely charged
particles (A, B) either annihilate (@) or fuse into a non-
contractible pair (D) (Fig. 5, left-hand panel). For
quenches to low temperatures, the noncontractible pairs
can be approximated as frozen unless another single par-
ticle annihilates one member of the pair, thus freeing the
other one (Fig. 5, right-hand panel). In a simple mean-field
model, one finds a surviving population of noncontractible
pairs D, provided the single particle density decays faster
than 1/¢, as is the case in our simulations. The resulting
time dependence of the total and noncontractible particle
densities is in qualitative agreement with the numerical
results illustrated in Fig. 4 [15]. On the longest time scales,
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FIG. 3 (color online). Numerical simulations of thermal
quenches in dipolar spin ice (system size L = 8, i.e., 8192 spins,
and simulation parameters for Dy,Ti,O; as in Ref. [17]). The
curves show the total density of defects p per tetrahedron as a
function of Monte Carlo time in units of Monte Carlo steps (one
attempt per spin), for quenches from 7 = 10 K, down to T =
0.025 K (red), T = 0.04 K (blue), 7 = 0.05 K (green), T =
0.075 K (magenta), T = 0.1 K (cyan), T = 0.125 K (yellow),
T =0.15 K (black), T = 0.4 K (red), T = 0.5 K (blue), and
T = 0.6 K (green)—appearing in order from right to left.
Inset: Long time behavior of p normalized by its plateau value
Pplatcau> cOmpared to the phenomenological model discussed in
the text (thin black lines).

107201-3



PRL 104, 107201 (2010)

PHYSICAL REVIEW LETTERS

week ending
12 MARCH 2010

_10°

s —o— p (total)
2l P
£ P
o

g 102}

=

‘@

$ 10°

©

)

o

g 10

c

o

=

10° 10? 10* 10°
time (MC steps)

FIG. 4 (color online). Numerical simulation of a thermal
quench down to 7 = 0.125 K (system size L = 8). The red
curve shows the total density of defects per tetrahedron p, while
the blue and the rapidly decaying magenta curves correspond to
the density of defects forming noncontractible pairs p,. and
contractible pairs p,., respectively.

annihilation of noncontractible pairs D — 0 around hex-
agonal loops terminates the plateau.

Equilibration time scales and experiment.—The domi-
nant dynamics in spin ice at low temperatures consists of
hopping monopoles. These correspond to single spin flips
which do not incur a cost for violating the ice rules. As the
temperature is lowered to zero, the monopole density
vanishes and spin ice freezes completely. At finite tem-
peratures the low density of monopoles leads to an expo-
nentially large time scale (in fact, possibly super-
exponentially large [2,10]) which grows faster than the
time scale governing the monopole density. Upon cooling,
there is a ““fast” process responsible for the thermalization
of the energy (i.e., the monopole density), and a slower
process that equilibrates the spin correlations. We believe
that this mechanism explains why certain quantities such
as the energy seem to equilibrate at temperatures where the
magnetization has long fallen out of equilibrium. It would
be on the long time scales of the slower process that any
magnetic order is established [14].

‘We note that noncontractible bound monopoles are prac-
tically absent upon heating from an equilibrium state.
There is thus an asymmetric approach to equilibrium in
the monopole density at a given temperature, depending on
the use of heating or cooling thermal quenches.

The most elegant way to measure monopole densities
would be via zero-field NMR on the oxygen nuclei at the
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FIG. 5 (color online). Schematic illustration of the reaction
processes in the mean-field model used to describe the very low
temperature limit of thermal quenches in spin ice.

center of the tetrahedra, which experience different field
strengths and corresponding fluctuation rates when the
tetrahedra host a monopole [16]. One needs a sufficiently
large density of monopoles to yield a measurable signal,
while preventing the monopoles from moving around too
quickly, thus spoiling the measurement. In thermal equi-
librium, temperatures low enough for the second condition
to be satisfied result in exceedingly small monopole den-
sities. Our results suggest that a temperature quench on
time scales sufficiently shorter than the time to develop the
dynamical arrest plateau in Fig. 3 (~10-100 ms) could be
used to induce a monopole-rich state (p = 1072 per tetra-
hedron), where motion at short times is obstructed by the
formation of noncontractible pairs.

Finally, the method of choice for imaging spin correla-
tions is neutron scattering [3-5]. As the noncontractible
monopole pairs remain bound on long time scales, the
concomitant short-range correlations should be visible in
the neutron scattering cross section.
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