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We investigate the quasiparticle-mass enhancement in the Hubbard model on the frustrated kagome

lattice by using a cluster extension of the dynamical mean-field theory. By analyzing the cluster density

matrix, we find a hierarchy of energy scale among charge, spin, and chirality degrees of freedom. A large

amount of entropy associated with the chirality is released at a much lower temperature than other energy

scales for spin and charge fluctuations, leading to a sharp peak in the specific heat and the single-particle

spectrum. The results manifest a generic mechanism of mass enhancement driven by an emergent

composite degree of freedom under geometrical frustration.
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Heavy-fermion behavior is one of the most intriguing
phenomena in correlated electron systems. Canonical ex-
amples are found in rare-earth compounds, in which a large
quasiparticle-mass enhancement is observed, e.g., in the
specific-heat coefficient �. The origin has been argued on
the basis of the Kondo effect—the screening of local
f-electron moments by conduction electrons [1]. In this
case, the local f-electron moments serve as an ‘‘entropy
reservoir’’ for the heavy-mass behavior [2].

Recently, a class of transition metal compounds has
drawn considerable attention due to their heavy-fermion
behavior. A large � of the order of 100 mJ=molK2 was
observed in compounds such as LiV2O4 [3],YðScÞMn2 [4],
and �-Mn [5]. The conventional Kondo scenario does not
apply straightforwardly to this heavy-fermion behavior,
since these 3d-electron compounds do not have an obvious
entropy reservoir like the localized f moments in the rare-
earth compounds. In spite of many theoretical proposals
[6–11], the issue remains controversial so far.

One of the proposals is the effect of strong electron
correlation under geometrical frustration [7,9–11].
Divergence of the quasiparticle mass at the correlation-
driven Mott transition was first pointed out by Brinkman
and Rice [12]. Later, the dynamical mean-field theory
(DMFT) provides a more sophisticated picture [13], where
the electron correlation results in separation of energy
scale between charge and spin (and orbital) degrees of
freedom of electrons. Namely, it suppresses charge fluctu-
ations at an energy scale of the Coulomb repulsion, and
leaves large spin (and orbital) fluctuations at much lower
temperatures T, which serve as an entropy reservoir [14].
This mass divergence, however, persists only when spatial
correlations are neglected. Indeed, when DMFT is ex-
tended to include spatial correlations, an antiferromagnetic
spin correlation develops at low T, which suppresses the
local spin fluctuations and collapses the heavy-fermion
state [15]. It is widely considered that this obstacle can
be circumvented by the geometrical frustration: The frus-
tration suppresses spatial correlations and rejuvenates the
masked heavy-fermion behavior. Hence, in this scenario,

the heavy-fermion behavior is an intrinsic property asso-
ciated with the criticality of the Mott transition, and the
geometrical frustration plays a secondary role of uncover-
ing it by suppressing spatial correlations.
In this Letter, contrary to the prevailing view, we reveal

an intensive role of the geometrical frustration on the
quasiparticle-mass enhancement. We show that the frus-
tration not only suppresses the spatial correlations but also
brings about a composite degree of freedom, and it plays a
role of the entropy reservoir. It is known that composite
objects, such as spin chirality [16] and self-organized
clusters [17–19], often emerge in insulating systems, but
we here explore the importance of such composites in
correlated metals. Through the study of the kagome-lattice
Hubbard model, we demonstrate that the spin chirality
degree of freedom emerges and plays a dominant role in
the mass enhancement.
We consider the Hubbard model on the kagome lattice

shown in Fig. 1(a),

H ¼ �t
X

hiji;�
ðcyi�cj� þ H:c:Þ þU

X

i

ni"ni#; (1)

where the sum of hiji is taken over the nearest-neighbor

sites and ni� ¼ cyi�ci�. The model has been extensively
studied as a minimal model with electron correlation and
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FIG. 1 (color online). (a) Schematic picture of the mapping of
the kagome lattice to three and nine-sites clusters in the CDMFT
calculations. The three-site density matrix is calculated for the
numbered three sites in each cluster. (b) Schematic pictures of
the doublon, spin-polarized, and chiral states defined in Eqs. (3)–
(5).
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geometrical frustration [20–23]. We set t ¼ kB ¼ @ ¼ 1,
and fix the electron density at half filling.

We adopt the cellular dynamical mean-field theory
(CDMFT) [24] to study this model, which is an extension
of DMFT to include the effect of spatial correlations within
a cluster. The method is basically the same as that used in
Ref. [22]; however, in the present study, we perform the
CDMFT calculations for two different clusters with three
and nine sites (Fig. 1) to check the cluster-size dependence.
Moreover, as a solver for the effective cluster model, we
employ the continuous-time auxiliary-field quantum
Monte Carlo (MC) method based on the perturbation ex-
pansion in terms ofU [25]. This solver gives precise results
more efficiently compared with the conventional Hirsch-
Fye algorithm used in Ref. [22]. Typically we take 256
imaginary-time slices and 106 MC steps, and the conver-
gence is reached after 20 self-consistency loops, e.g., at
U ¼ 6 and T ¼ 0:1. Larger computational cost is required
at lower T and larger U, in particular, in the calculations of
the specific heat and the entropy (see below).

In order to identify the relevant degrees of freedom in
the system, we calculate the cluster density matrix, which
gives the probability distribution of quantum mechanical
states within the cluster. Here we consider the density
matrix defined on the three sites within each cluster in-
dicated in Fig. 1. We calculate the diagonal components

�� ¼ 1

Z
Trðj�ih�je�H =TÞ (2)

for a cluster state j�i, where Z is the partition function.
The 43 ¼ 64 states are classified by irreducible represen-
tations under the Uð1Þ � SUð2Þ � C3v symmetry of the
model. Among them, we focus on �� for the following
three states (and their symmetrically equivalent ones):

jDi ¼ 1ffiffiffi
3

p ðj"#; "; 0i þ j0; "#; "i þ j"; 0; "#iÞ; (3)

jSi ¼ j"; "; "i; (4)

jKi ¼ 1ffiffiffi
3

p ðj#; "; "i þ ~!j"; #; "i þ ~!2j"; "; #iÞ; (5)

where j"#; "; 0i � cy1"c
y
1#c

y
2"jvaci, etc., (jvaci is a vacuum),

and ~! is a phase factor defined below. Here, we call jDi the
doublon state which includes a doublon-holon pair, jSi the
spin-polarized state with the total spin S ¼ 3=2, and jKi
the chiral state. Among these states, the chiral state is of
special interest. jKi retains fourfold degeneracy with its
time-reversal and reflection conjugate states: The four
states are labeled by the two discrete quantum numbers,
the z component of total spin Stotz ¼ �1=2 and the helicity
� ¼ �1 [ ~! in Eq. (5) is given by expði 23��Þ]. We note

that the chiral states are the eigenstates of scalar- and
vector-chirality operators, studied in the previous
CDMFT study [26].

Figure 2 shows our CDMFT results for the density
matrices, �D, �S, and �K, in the correlated metallic region
at U ¼ 6. (The critical value for the Mott transition was

estimated at Uc ’ 8:2 [22].) The three components show
qualitatively different T dependences. At high enough T,
�D � �S � �K � 1=64, since all the 64 states have nearly
equal weights. While lowering T, �D is suppressed but �S

and �K are enhanced. �S turns to decrease with showing a
broad peak at T � 1:2. �K continues to increase down to
lower T, but finally turns to decrease with showing a peak
at T � 0:32. It is noteworthy that the results show little
cluster-size dependence as shown in Fig. 2: This indicates
that our CDMFT results show good convergence to the
thermodynamic limit. Such rapid convergence may be
attributed to suppressed intertriangular correlations under
the corner-sharing topology of the kagome lattice, as dis-
cussed in the localized spin models [27,28].
These characteristic T dependences indicate a hierarchy

of energy scale for relevant degrees of freedom. Charge
fluctuations are first suppressed by large U, being signaled
by the suppression of �D which includes a doublon-holon
pair. At a lower energy scale where �S decreases steeply,
the spin degree of freedom is frozen out, and finally, the
chirality is quenched at the lowest energy scale, corre-
sponding to the suppression of �K. We identify the char-
acteristic energy scales for charge, spin, and chirality
degrees of freedom by the temperatures Tcharge, Tspin, and

Tchiral where �D, �S, and �K are suppressed most rapidly
(Fig. 2). The hierarchy is clearly seen as Tcharge ’ 2:0>

Tspin ’ 0:37> Tchiral ’ 0:18.

We investigate the energy hierarchy systematically in
the correlated metallic region. Figures 3(a)–3(c) show T
dependences of �D, �S, and �K with varying U. The
estimated characteristic temperatures are summarized in
the crossover phase diagram in Fig. 3(d). Tcharge increases

as U increases, which is reasonable since charge fluctua-
tions are suppressed below T ’ U�W� (W� is a renor-
malized band width). On the other hand, Tspin decreases as

U increases. We compare Tspin with an effective super-

exchange interaction J ¼ 4t2=U, derived in the strong-
coupling expansion in t=U, and find approximately Tspin �
J=2. This suggests that the reduction of �S is a strong-
correlation effect, originating from the effective spin ex-
change under suppressed charge fluctuations. Tchiral also
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FIG. 2 (color online). Temperature dependences of the three-
site density matrices, �D, �S, and �K. The results for the three
(nine)-site cluster are shown by circles (crosses).
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decreases as U increases, and is always located well below
Tspin. This indicates that the composite chiral degree of

freedom is dominated by a much smaller energy scale
compared with J.

The energy hierarchy and the quenching of each degree
of freedom are also observed from the entropic point of
view. Figures 4(a) and 4(b) show the CDMFT results for
the specific heat C and the entropy S, respectively. Here,
we calculatedC by numerical differentiation of the internal
energy: To obtain the high precision data, we took a large
number of imaginary-time slices, e.g., 8192 slices at T ’
0:1 and U ’ 6 [29]. The entropy S is obtained by the
numerical integration of C=T. As a result, C shows a sharp
peak at low T ’ Tchiral in addition to a broad peak at T �
Tcharge. The broad peak comes from the release of charge

entropy; the peak temperature shifts to higher in accord
with Tcharge while increasing U (not shown). On the other

hand, the low-T sharp peak originates from the entropy
release associated with the chirality: In fact, as shown in
Fig. 4(b), the entropy S takes a value close to log4=3 at
Tchiral, corresponding to the fourfold degeneracy of the
chiral states jKi. It is difficult to see a clear structure in
C at T ’ Tspin; however, S reaches nearly log8=3 at Tspin,

reflecting the fourfold spin-polarized states jSi in addition
to the four chiral states. Our results indicate that the
entropy associated with chirality, spin, and charge degrees
of freedom is released at separated energy scales Tchiral,
Tspin, and Tcharge in Fig. 3(d). To our knowledge, the

resultant sharp peak in the specific heat due to the chirality
has never been found in the previous studies.

The sharp peak is considered a hallmark of the formation
of Fermi liquid state below Tchiral. In fact, as shown in

Fig. 4(c), the single-particle spectrum develops a sharp
coherence peak at the Fermi level ! ¼ 0 below Tchiral. In
addition, as plotted in Fig. 4(d), the uniform magnetic
susceptibility � approaches a nonzero value as T ! 0 after
showing a broad peak at around Tchiral. All the results
consistently indicate that a Fermi liquid state emerges at
low T and the effective Fermi temperature is set by Tchiral.
In the low-T Fermi liquid state, the quasiparticle mass is

largely enhanced because the effective Fermi temperature
Tchiral is suppressed. Although it is difficult to estimate the
specific-heat coefficient � directly from the low-T data of
C, we obtain a rough estimate of � from the value of Tchiral:
Assuming that the chiral entropy log4=3 is released uni-
formly in the range of 0< T < Tchiral, we obtain the mass
enhancement factor �� ¼ �=�0 ’ log4=ð3Tchiral�0Þ ’ 3 at
U ¼ 6, where �0 ’ 0:873 is the specific-heat coefficient at
U ¼ 0. As Tchiral is suppressed for larger U [Fig. 3(d)], ��
is enhanced with increasing U, as shown in Fig. 4(e). We
also plot the enhancement factor �� ¼ �=�0 estimated at
T ¼ 0:05, where �0 is the susceptibility at U ¼ 0. The
results of �� and �� consistently indicate a chirality-driven
mass enhancement near the Mott transition.
In the formation of the heavy-quasiparticle state, the

geometrical frustration plays an essential role, not only to
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FIG. 3 (color online). Temperature dependences of the density
matrices (a) �D, (b) �S, and (c) �K. The results are for the three-
site cluster and the lines are guides for the eye. The characteristic
energy scales Tcharge, Tspin, and Tchiral, determined by the steep

decrease of �D, �S, and �K, are plotted as a function of U in (d).
The dashed line shows the effective exchange interaction J ¼
4t2=U for comparison.
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FIG. 4 (color online). Temperature dependences of (a) specific
heat and (b) entropy at U ¼ 6 per site. The results at U ¼ 0 are
shown for comparison. Three vertical dashed lines indicate the
characteristic temperatures estimated in Fig. 3, and three hori-
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log64=3. (c) Single-particle spectrum at U ¼ 6 obtained by the
maximum entropy method. (d) Temperature dependence of the
uniform magnetic susceptibility. (e) Enhancement factors of the
specific-heat coefficient estimated from Tchiral, �

�, and of the
uniform magnetic susceptibility at T ¼ 0:05, ��. See the text for
details. All the results are obtained by the three-site cluster
DMFT.
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suppress antiferromagnetic correlations but to bring about
the degeneracy due to high local symmetry—in the present
model, the fourfold degeneracy of the chiral states in the
triangular unit. In general, geometrically-frustrated lattices
possess such a local unit with high symmetry, e.g., tri-
angles or tetrahedra, and hence, it is commonly expected
that similar locally-degenerate state emerges. Our finding
provides a prototypical example for the ubiquitous phe-
nomenon in frustrated systems under strong correlation,
that is, crossover from highly-symmetric local states to
Fermi liquid state with an enhancement of quasiparticle
mass. We believe that the local degeneracy and emergent
composite degree of freedom are of primary importance for
the puzzling heavy-fermion state in transition metal com-
pounds, such as LiV2O4 [3], YðScÞMn2 [4], and �-Mn [5].

Finally let us remark on the fate of Tchiral as the system
enters the Mott insulating region at larger U. In the sense
that it sets the effective Fermi temperature, Tchiral might
terminate at the first-order Mott phase boundary. We note
in fact that Tchiral in Fig. 3(d) appears to approach the
critical point (Uc, Tc) suggested in Ref. [22]. On the other
hand, the spin chirality itself can be important even in the
insulating region: Higher-order perturbations in terms of
t=U give higher-order exchange interactions in the effec-
tive spin model, which may induce composite spin objects,
such as the chirality. Unfortunately it is hard to clarify how
Tchiral behaves at U > 8 because of the limitation of our
simulation, and some complementary study is highly de-
sired. An interesting issue related to this problem is the
recent experimental observation of a sharp peak in the
low-T specific heat of 3He on graphite at a commensurate
filling 4=7 [30]. It has been argued that the system is
insulating but in the vicinity of the Mott transition [31],
and the geometry of 3He atoms has frustration in between
triangular and kagome lattices [32].

In summary, we have studied the correlated metallic
region of the Hubbard model on the kagome lattice by
the cellular dynamical mean-field theory, with the
continuous-time auxiliary-field quantum Monte Carlo
method as an impurity solver. We found that, in addition
to charge and spin, the chirality degree of freedom be-
comes relevant in this system, and energy hierarchy ap-
pears among charge, spin, and chirality. Moreover, we
showed that the quasiparticle state with strongly renormal-
ized mass is stabilized at low temperatures, as a manifes-
tation of the strong frustration. The heavy-quasiparticle
state is formed by the entropy release associated with the
emergent composite degree of freedom, the chirality. This
chirality-driven mass enhancement provides a prototypical
example for the large mass behavior in frustrated systems
under strong correlation, and gives a clue to controversies
on the heavy-fermion behavior of transition metal com-
pounds such as LiV2O4. It is interesting to extend the study
for more realistic models by considering the effect of
carrier doping and orbital degrees of freedom.
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