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Kondo insulators are a particularly simple type of heavy electron material, where a filled band of heavy
quasiparticles gives rise to a narrow band insulator. Starting with the Anderson lattice Hamiltonian, we
develop a topological classification of emergent band structures for Kondo insulators and show that these
materials may host three-dimensional topological insulating phases. We propose a general and practical
prescription of calculating the Z, topological indices for various lattice structures. Experimental
implications of the topological Kondo insulating behavior are discussed.
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Kondo insulators are a particularly simple type of heavy
fermion material, first discovered 40 years ago [1], in
which highly renormalized f-electrons, hybridized with
conduction electrons, form a completely filled band of
quasiparticles with excitation gaps in the millivolt range
[2,3]. While these materials are strongly interacting elec-
tron systems, their excitations and their ground states can
be regarded as adiabatically connected to noninteracting
band insulators [4].

It was recently shown that time-reversal invariant band
insulators can be classified by the topological structure of
their ground state wave functions [5-9]. One of the dra-
matic consequences of this discovery is the existence of a
new class of “topological” band insulator in which strong
spin-orbit coupling leads to a ground state that is topologi-
cally distinct from the vacuum, giving rise to gapless
surface excitations.

In this Letter, we show that Kondo insulators, as adia-
batic descendents of band insulators, can also be topo-
logically classified. The strong spin-orbit coupling char-
acteristic of these materials leads us to predict that a subset
of Kondo insulators are topologically nontrivial, with
anomalous surface excitations. In current models of topo-
logical insulators, the spin-orbit coupling is encoded in a
spin-dependent hopping amplitudes between different unit
cells. By contrast, in a topological Kondo insulator (TKI),
we show that the topologically nontrivial insulating state is
produced by the spin-orbit coupling associated with the
hybridization between conduction and f electrons.

Below, we develop a model for topological Kls. The
physics we study is motivated by the canonical Kondo
insulating behavior of SmBg¢ [1] and Ce;Bi,Pt; [10]. The
realization of a particular topologically nontrivial insulat-
ing state depends on the position of renormalized f level
relative to the bottom of the conduction band, Fig. 1. To
analyze the topology of the bands in these materials, we
use a periodic Anderson lattice model.

In a KI, the insulating state arises due to hybridization
between the conduction and f electrons, provided that the
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chemical potential lies inside the hybridization gap sepa-
rating the quasiparticle bands. The spatial symmetry of the
hybridization amplitude is determined by the symmetry of
the underlying crystal-field Kramers doublets of the rare-
earth ion, and it is precisely this symmetry that is respon-
sible for nontrivial topological structures in a KI. To ana-
lyze this topology, we first employ a tight-binding model
on a simple cubic lattice, which is adiabatically connected
to the Hamiltonian of the KI material. We show that in this
case, band topology is uniquely determined by the non-
interacting band structure of the system in the absence of
hybridization. Second, we consider a more general KI in a
lattice with a body centered cubic lattice, and show that
regardless of microscopic details, there always exists a
parameter range in which a KI is a strong topological
insulator (STI).

We begin with the periodic Anderson Kondo lattice
Hamiltonian, written in terms of the fermion operators
associated with the crystal-field symmetry of the under-
lying lattice
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FIG. 1 (color online). Values of strong and weak topological
indices and signs of §; (see text) at the high-symmetry points of
the Brillouin zone (BZ) are shown as a function of position of the
renormalized f level relative to the bottom of the conduction
band. For the simple cubic tight-binding spectrum of the form
€x = —213,—,,,. cosk, topologically strong, weak Kondo insu-
lating behavior as well as regular band insulator (| f| > 61) can
be realized.
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where &) is the dispersion of a tight-binding band of
conduction electrons. We assume that the ground state of
the isolated magnetic ion is a Kramers doublet |I"a), where
I" labels a particular representation of the crystal symmetry
group. For instance, in a cerium-based Kondo system, the
Ce ion has a Ce3" valence configuration; hence, we have
one f electron in a J = 5/2 atomic shell. In Eq. (1) above,
the operator c;-fa creates an electron on-site j in a Wannier
state described by the quantum number o = =, a}o) is the
bare energy of the f level, V is the bare hybridization, and
U describes Hubbard repulsion between f electrons. One
can relate the Wannier states at site j as follows [11]: ¢;, =
S ol Prilaockoe™ R, where the form factors [ @y ], are
two dimensional matrices

Ol = 3 (Tabmzo)Ti,®) @
m€e[—3,3]
where 73,(k) = 1 3 p ¥y (R)e™ R is a tight-binding gen-
eralization of the spherical Harmonics that preserves the
translational symmetry of the hybridization, ®(k) =
®(k + G), where G is a reciprocal lattice vector. Here,
R are the positions of the Z nearest neighbor sites around
the magnetic ion.

The low-energy properties of the model (1) are de-
scribed in terms of renormalized quasiparticles formed
via strong hybridization between the ¢ and f states and on-
site repulsion Uy. In the regime where the f states are pre-
dominantly localized, we can neglect the momentum de-
pendence of the f electron self-energy 2 /(k, ) = 2 /(w)
so that the effective low-energy Hamiltonian reads [12]

_( &1 V!
H (k) = (V(DFk 8f£k ) 3)

where & is the bare spectrum of conduction electrons
taken relative to the chemical potential, &, = z[s}p) +
2/(0)] is the renormalized f level, V=zV, z=
(1 =93 (w)/dw),L,, and 1 denotes the unit 2 X 2 ma-
trix. The KI is formed if the chemical potential of the
quasiparticles lies inside the hybridization gap, separating

the two bands with the spectra E. (k) =1[& + &, *

VE — )7 + 4IVAP] with A} = 1 T ®f, dpy ]
From Eq. (2), we see that the form factors @y are
momentum-dependent unitary matrices that relate the
spin quantization axes of the Bloch states and the spin-
orbit coupled Wannier states. Our choice of hybridization

ensures that the mean-field Hamiltonian [Eq. (3)] is a
periodic function satisfying H ¢(k) = H +(k + G).

Form factors are uniquely determined by the wave func-
tions of a magnetic ion, |T'a). For a case of Ce ion, we
classify the crystal-field states according to their orbital
symmetry parameterized by the index a = 1, 2, 3 and the
pseudospin quantum number (o = *) [13]. Hence, we
have f1,[0) = |=1/2), f1.10) =[=3/2), and f1,]0) =
| =5/2). The momentum dependence of the hybridization
gap A, (k) follows from Eq. (2). Note that for small mo-
menta, the hybridization gap has a line of nodes along the z
axis for the shapes a = 2, 3, but generic combinations of
all three form factors contain no nodes. The key results of
this Letter are most simply illustrated using the nodeless
a = 1 Kramers doublet as the ground state of the magnetic
ion.

To analyze the topology of the bands, we use the fact that
topology is invariant under any adiabatic deformation of
the Hamiltonian. We begin our study with a tight-binding
model for a KI on a simple cubic lattice. The technical
analysis is readily generalized to more complicated cases
as discussed below. The most important element of the
analysis is the odd parity form factor of the f electrons,
®, (k) = —d,(—Kk). This parity property is the only es-
sential input as far as the topological structure is
concerned.

In Ref. [14], Fu and Kane demonstrate that in an insu-
lator with time-reversal and space-inversion symmetry, the
topological structure is determined by parity properties at
the eight high-symmetry points, k},, in the 3D BZ which
are invariant under time reversal, up to a reciprocal lattice
vector: k;, = —K, + G (see insets in Fig. 1). In our case,
these symmetries require that H ,;(k) = PFH (—k)P~!
and H (k)T = T H ;(—k)T ~!, where the parity ma-
trix P and the unitary part of the time-reversal operator 7~
are given by

r=(t ) T ) @

where o, is the second Pauli matrix. For any space-inver-
sion-odd form factor, it follows immediately that @u(k) =
0 at a high-symmetry point. Hence, the Hamiltonian at this
high-symmetry point is simply H (k;) = (& +
gr)1/2 + (éx: — &4)P/2, where I is the four-dimensional
identity matrix.

The parity at a high-symmetry point is thus determined
by 8,, = sgn(éx: — &). Four independent Z, topological
indices [15] (one strong and three weak indices) can be
constructed from 8,,: (i) The strong topological index is the
product of all eight 8,,’s: Isy; = [18_, 8,, = =1; (ii) by
setting k; =0 (where j=x, y, and z), three high-
symmetry planes, P; = {k: k; = O}, are formed that con-
tain four high-symmetry points each. The product of the
parities at these four points defines the corresponding
weak-topological index, I{,\,Tl =TI, e P/_Bm = *1. The
existence of the three weak-topological indices in 3D is
related to a Z, topological index for 2D systems (a weak
3D Tl is similar to a stack of 2D Z, topological insulators).
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Because there are three independent ways to stack 2D
layers to form a 3D system, the number of independent
weak-topological indices is also three.

A conventional band insulator has all of the four indices
Ist = Ryt = By = Ly = +1, while an index [ =
(—1) indicates a Z, topological state with the odd number
of surface Dirac modes. For a KI with &» -y <&, and
éx:,#0 > &5, we find Igyp = —1, and hence the Kondo
insulating state is a strong topological insulator which
will be robust with respect to disorder. Weak topological
insulators and topologically trivial insulators can in prin-
ciple be found for different band structures and different
values of &7, Fig. 1. Although we have been specifically
considering a tight-binding model with a primitive unit
cell, all our conclusions apply directly to systems adiabati-
cally connected to this model. In order to prove it explicitly
and to investigate more general cases, we develop a differ-
ent and more general technique similar to that proposed in
Ref. [7].

We shall now study an example of a KI for the specific
shape a = 1 and explore the parameter range in which it
remains a STI. Here, the form factor is universally deter-
mined in the small-momentum limit by the f-wave sym-
metry of the electron orbitals and the point group
symmetry of the lattice. Expression for the form factor of
a Kramer’s doublet I'; is

s [ VY (K)
Vil 2r3 (k)

where kK = k/k and Y! (k) are the spherical harmonics. At
larger momenta, the form factor depends on the micro-
scopic details of the lattice and the Kondo coupling. In
general, form factor can be written as &, = 7y * 7.

We show below that momenta where &, = 0 are cru-
cial in calculating the topological indices, so that our
results are generic for a linear combination of all three
shapes. The most obvious zero point is located in the origin
as shown in Eq. (5). We now prove that this zero point is
topologically protected and that its existence necessarily
yields the existence of other zero points <i>1k[ = 0 with
k; # O (this conclusion is similar to fermion doubling of
relativistic fermions, which requires the presence of an
even number of Dirac points on a compact manifold).
To prove this, we draw a sphere S? at the origin with
radius k, as shown in Fig. 2(b) and require by #0
on the sphere, which enables the definition of a Chern

number C =& §o ds - eifkni(§knj) X (Vieny), where

n; = m;/ym? + m2 + m? and m; is the &; component of

‘ifl as defined above. The Chern number is a topological
index quantized to an integer value. For small k(, Eq. (5) is
asymptotically accurate, which gives C = 1. Notice that
this topological index is invariant as k, changes adiabati-
cally. The nonzero value of C indicates that k, cannot be
decreased to zero smoothly, and hence a point with (iJIk =

A —_— 3 I
b, 2¥7 (k) ] 5)

—ARK)

FIG. 2 (color online). (a) Surface plot of the hybridization gap
Ay for the form factor of shape a = 1, Eq. (3). The k depen-
dence of the hybridization gap originates from the underlying
orbital structure of the localized electrons, which form the
magnetic moment. (b) The BZ for the BCC unit cell. Dots
mark the eight high-symmetry points. The semisphere at the
origin separate regions I (inside) and II (outside). The intersec-
tion of the sphere with the high-symmetry plane (k, = 0) is
marked by the solid line.

0 must exist inside the sphere, which ensures @lkzo = 0.
Since the BZ has a periodic structure and is a compact
manifold, the same argument requires zero points @y, =
0 outside the sphere with |Kk|,, >k, (m = 1,2,...). This
conclusion can be verified explicitly in the simple cubic
lattice model studied above, where tiDIk = (0 at each of the
eight high-symmetry points.

Now, we relax the assumption about the simple cubic
lattice and allow for a more general structure. Because of
time-reversal and space-inversion symmetries, both bands
are doubly generated in a KI. Therefore, the corresponding
Bloch wave functions W'!(k) and W2(k) (which are four-
component vectors) can be chosen arbitrarily up to a “lo-
cal” U(2) transformation in momentum space. For fermi-
ons, 72 = —I, and hence, we require that 7 ¥i(k) =
€[ ¥/(—Kk)]" under time reversal with €; being the
Levi-Civita symbol. For concreteness, we focus below on
the case with &, <&, at k = 0 and &y, > &/ at all other

zero points of (iDIk, which gave us a strong-topological
insulator in the model with a simple cubic lattice discussed
above. For such a band structure, it can be easily checked
that the wave functions can not be defined globally in the
entire BZ with the constraint 7 W/(k) = €;;[W/(—k)]*
[16]. However, the BZ can be separated into two regions
(cf. Ref. [17]) I (Ik| < ko) and II (|k| > ky) with k, being
an arbitrarily small momentum such that only one zero
point of &, k=0 is enclosed inside the sphere,
Fig. 2(b). In each of the two regions, singularity-free
Bloch wave functions can be constructed. For example,
the valence band has following wave functions in region (/)

Vik) = N_(0, e, — E_, =Dy, — D),

(6)
\P%(k) - N_(E'f - E_, 0, _q)lly _(1)21),
and in region (/1)
"I’]l](k) = N-F(_(I);]’ _(DZQ) 0) E+ - ef): (7)

\I’%I(k) = ‘N+(_(I)T]) _(I)Tz, E+ - Ef’ O)
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Here, ®;; are the (i, j) components of the form factor,

E.(k) and Ay were defined above Eq. (3), and N . =

1/\/2V2Ai + (éx — €)(E~ — €f). These two sets of
Bloch wave functions are connected by a “gauge” trans-
formation Wi(k) = U ij(k)‘Pfl(k) at the boundary, S2, be-
tween the regions [ and [/, with the matrix
Ok)=—6.01,6./y.

The topological structure of a 3D time-reversal invariant
insulator is determined by the wave functions (6) and (7),
on the six high-symmetry planes P; = {k: k; = 0} and
P, ={k: k; = m} [6,7,14]. As shown in Fig. 2(b), the
boundary between the two regions intersects with P; and
the intersections are circles, C e On such a circle, the matrix
U takes the form of U(k) = &, exp(i@dy + i@yh - &),
with 7 being a fixed 3D unit vector, corresponding to a
specific “gauge.” As a result, a winding number can be
definedonCas w; = fcl g—:‘T - Vy ok However, it is defined

modulo 2 only because a gauge transformation can change
@k — ¢k + 2mde and hence change w; by an even number
2m, where ¢ is the azimuth angle of k in a high-symmetry
plane {note that a transformation ¢y, — ¢y + 2m + 1)¢
would violate the symmetry constraint 7 Wi(k) =
€[ ¥/(—k)]'}. For P/, the corresponding winding num-
bers w} are zero for the case we studied here because they
do not intersect with the boundary. The topological indices
can be computed from these winding numbers as follows:

Isn = (=" and Ky =(-D", @

where g7y is equivalently defined for j = x, y, or z. For the
types of KI band structures considered here, the topologi-
cal indices can be universally determined by choosing a
small enough k, and using the asymptotic form factor of
Eq. (5). As a result, we find that the generic Kondo system
is a STI in full agreement with arguments above based on
adiabatic deformation of the Hamiltonian onto a simple
cubic lattice.

Let us briefly discuss the implications of our results for
existing Kondo insulators. From our theory, we expect that
materials in which f electrons are close to integral valence
are likely to be weak-topological Kondo insulators and
thus are unstable with respect to disorder. An interesting
example is SmBg¢ for which recent LSDA + U band struc-
ture calculations [18] show the position of the f level
equals approximately one sixth of the bandwidth consistent
with the core-level spectroscopy measurements of the f
level occupation ny ~ 0.7 [19], placing the quasiparticle f
level of SmBg close to the border separating STI and WTI
phases. Another promising candidate for the manifestation
of topologically nontrivial insulating state is CeNiSn.
Recent transport data in CeNiSn [20] show suppression
of semiconducting behavior in resistivity with increase in
sample’s quality, although there is an evidence for the gap
formation at 7 =~ 10 K. Given that the f electrons in these

systems are predominantly localized, it is tempting to
speculate that the CeNiSn is a weak-topological Kondo
insulator ascribing the semimetallic transport properties to
metallic surface states. These are issues that we hope can
be resolved in the near future through more accurate mod-
elling and the use of high precision ARPES and STEM
spectroscopy.

To summarize, we have developed a theory of topologi-
cal 3D Kondo insulators. Within our model, topologically
nontrivial insulating states are realized over a wide pa-
rameter range. In particular, we have shown that a strong
topological insulating state occurs when the position of the
renormalized f level is near the top, or the bottom of the
conduction band. This suggests the most likely candidates
for this kind of behavior are heavy fermion materials which
are more mixed valent or have narrow conduction bands.
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