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We study the sensitivity and resolution of phase measurement in a Mach-Zehnder interferometer with

two-mode squeezed vacuum ( �n photons on average). We show that superresolution and sub-Heisenberg

sensitivity is obtained with parity detection. In particular, in our setup, dependence of the signal on the

phase evolves �n times faster than in traditional schemes, and uncertainty in the phase estimation is better

than 1= �n, and we saturate the quantum Cramer-Rao bound.
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Different physical mechanisms contribute to phase mea-
surement. Therefore, improved phase estimation benefits
multiple areas of scientific research, such as quantum
metrology, imaging, sensing, and information processing.
As a consequence, enormous efforts have been devoted to
improve the resolution and sensitivity of interferometers.

In what follows, we direct our attention to quantum
interferometry. The benchmark that quantum interferome-
try is compared against is one with coherent light input and
intensity difference measurement at the output of a Mach-
Zehnder interferometer (MZI). Without nonlinear interac-
tion between photons in the MZI, phase sensitivity of this

benchmark is shot-noise limited (SNL), namely �’SNL ¼
1=

ffiffiffi
�n

p
, where �n is the average number of photons [1].

In 1981, Caves pointed out that by using coherent light
together with squeezed vacuum one could beat SNL �’<
�’SNL (supersensitivity) [2]. In the work of Boto et al., it
was demonstrated that by exploiting special states of light,
such as N00N states (N-particle path-entangled states
jN; 0i þ j0; Ni), it is possible to beat the Rayleigh diffrac-
tion limit in imaging and lithography (superresolution),
while also beating SNL [3–6]. Finally, it was shown in
Ref. [7] that input state entanglement is important in order
to achieve supersensitivity.

We could place a limit on the supersensitivity, if we
assume the validity of the Heisenberg uncertainty principle
for phase and photon number uncertainties: �n�’ � 1.
This relationship easily translates into the Heisenberg limit
on the phase sensitivity of a N-photon state,�’HL ¼ 1=N,
due to the bound on photon number difference,�n � N. In
order to define a similar limit for states with an indefinite
number of photons, characterized by the mean value �n, an
argument about finite energy is given—thus imposing the
following bound �n � �n. Such a notion about the
Heisenberg limit can be traced back to, for example,
work by Ou [8], where he speculates that the fundamental
limit set by quantum mechanics on sensitivity is the

Heisenberg limit, �’HL ¼ 1= �n, since all analyses up until
then had not shown better than 1= �n sensitivity.
Experimental realization of a supersensitive phase mea-

surement that would be better than a SNL measurement
with coherent light have been hindered by the fact that
entangled states of light, with large number of photons, are
difficult to obtain. Therefore we turn our attention to the
brightest (experimentally available) nonclassical light—-
two-mode squeezed vacuum (TMSV). A state of TMSV

is a superposition of twin Fock states jc �ni ¼P1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
pnð �nÞ

p jn; ni, where the probability of a twin Fock

state jn; ni ¼ jniAjniB to be present depends on the aver-
age number of photons in both modes of TMSV, �n, in the
following way, pnð �nÞ ¼ ð1� t �nÞtn�n with t �n ¼ 1=ð1þ 2= �nÞ
[9].
Light entering a MZI in the TMSV state exits a lossless

interferometer in the state jc fi ¼ ÛMZIjc �ni, where the

MZI is described by the unitary transformation ÛMZI

(Fig. 1). This transformation, in terms of the field operators

for the optical modes â and b̂, is ÛMZI ¼ ÛP̂’Û ¼
exp½’ðâyb̂� b̂yâÞ=2�, where P̂’ ¼ expð�i’ĜÞ de-

scribes accumulation of a phase difference ’; and Û ¼
exp½i �4 ðâyb̂þ âb̂yÞ� describes the 50-50 beam splitter,

with a �=2 phase shift for the reflected mode. In a linear

medium the generator of phase evolution is Ĝ ¼ ðn̂A �
n̂BÞ=2, where n̂A ¼ âyâ and n̂B ¼ b̂yb̂ are the photon
number operators in each mode.
Phase estimation is based on the detection of light at the

outputs of a MZI. Not all detection schemes are capable of
exploiting the full potential of nonclassical light to be
supersensitive and superresolving. For example, intensity
difference measurement, which is standard for optical
interferometry with coherent light, is not phase sensitive
at all if TMSV input is used [10]. In our Letter, we consider
parity detection for our measuring scheme. The parity

operator on an output mode A is �̂A ¼ expði�n̂AÞ. Parity
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was originally discussed in the context of trapped ions by
Bollinger et al. [11] and later adopted for optical interfer-
ometry by Gerry and Campos [12,13]. Supersensitivity
with this detection strategy has been shown for several
classes of input states [14]. Finally, parity detection was
also shown to allow better than classical resolution with
coherent light while keeping SNL phase sensitivity [15].

A parity measurement on mode A at the output of the

MZI is computed by h�̂Ai ¼ hc fj�̂Ajc fi. It has been

shown in Ref. [15] that the parity measurement on mode
A after the final beam splitter is equivalent to the measure-
ment that is constructed from all the jM;M0i ! jM0;Mi
projectors as follows [15]

�̂ AB ¼ X1
N¼0

XN
M¼0

jN �M;MihM;N �Mj; (1)

acting on the inner modes of the MZI, such that jc i ¼
P̂’Ûjc �ni. Our use of the �̂AB operator here highlights the

fact that parity detection combined with a 50-50 beam
splitter provides a measurement scheme that includes all
of the phase-carrying off-diagonal terms in the two-mode
density matrix [15]. Calculation of h�̂ABi simplifies sig-
nificantly once it is noted that such an operator, as well as a
beam splitter, does not change the total number of photons
in the state. Thus a lossless MZI with the parity detection
scheme does not mix twin Fock states with different num-
ber of photons giving:

h�̂Ai ¼ ð1� t �nÞ
X1
n¼0

tn�nh�̂Ain; (2)

where h�̂Ain ¼ hn; njÛy
MZI�̂AÛMZIjn; ni is the expecta-

tion value of the parity operator for the twin Fock state

input. In turn, the expression h�̂Ain ¼ ð�1ÞnPn½cosð2’Þ�,
given in terms of Legendre polynomials Pn, could be found
in Ref. [16]. Finally, one can identify our expression in

Eq. (2) with the generating function for Legendre poly-
nomials [17] and arrive to the following:

h�̂Ai’þ�=2 ¼ h�̂ABi’ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �nð �nþ 2Þsin2’p ; (3)

where an additional �=2 phase shift was introduced.
Equation (3) is the central result of this Letter and, in
what follows, it will be used to study the resolution and
sensitivity of our proposed scheme.
Let us compare here the signal outcomes of the TMSV

scheme with �n ¼ 10 to coherent-state-based optical inter-
ferometry with �n ¼ 100 (see Fig. 2). Intensity difference
measurement, with a coherent state at the input of the MZI,
exhibits classical interference—a sinusoidal dependence
on the phase with an intensity independent period of 2�.
In the case of parity detection with the coherent state input,

it was shown in Ref. [15] that h�̂Ai ¼ exp½�2 �nsin2ð’=2Þ�
with a 2� period and a feature at the phase origin that is

narrower than the classical curve by a factor of �’ ¼
1=

ffiffiffi
�n

p
. In our case, the width of the feature is further

reduced by
ffiffiffiffiffiffiffiffiffiffiffiffi
�nþ 2

p
times. Therefore, the peak in Fig. 2 is

as narrow for a �n ¼ 10 TMSV as for a �n ¼ 100 coherent
state.
The other aspect of optical interferometry is its phase

sensitivity that is quantified by an average value of how
much the measured phase could differ,�’, from the actual
value. Therefore the most sensitive measurement will have
the smallest�’. The smallest value, however, could not be

smaller than �’min ¼ 1=
ffiffiffiffiffiffiffi
FQ

p
[18], where the quantum

Fisher information FQ for a pure state is just four times

the variance �Ĝ2 of the phase evolution generator given
above. This results in a measurement independent limit of
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FIG. 2. Measured signals at the output of the MZI with coher-
ent light ( �n ¼ 100) and TMSV ( �n ¼ 10) inputs against accumu-
lated phase difference. Solid and dashed lines are the outputs of
the parity measurement for TMSV and coherent light, respec-
tively. The dotted line, given for comparison, is a scaled down
output of intensity difference measurement on the output of the
MZI fed with coherent light. TMSV with much smaller photon
number performs as well as coherent light.

FIG. 1 (color online). The Mach-Zehnder interferometer used
in the calculations. The two-mode squeezed vacuum input state
jc �ni is indicated together with the intermediate state jc i ¼
P̂’Ûjc �ni. Vertical dash-dotted lines indicate places where two

measurements �̂AB and �̂A are to be implemented.
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the phase sensitivity of optical interferometry with a given
state:

�’2
min ¼

1

4�Ĝ2
: (4)

Our analysis shows that Eq. (4), in the case of coherent
light, limits the attainable sensitivity to �’2

min ¼ �n�1, shot

noise, while for TMSV it sets a much lower limit �’2
min ¼ð �n2 þ 2 �nÞ�1 < �n�2. This means that TMSV has a potential

for supersensitive phase estimation with phase sensitivity
better than the Heisenberg limit defined as 1= �n. Let us
show that phase measurement based on the parity detection
discussed here can actually reach this limit.

The variance of the phase estimation based on the out-
come of the parity measurement could be estimated as

�’2 ¼ 1� h�̂ABi2
ð@h�̂ABi=@’Þ2

; (5)

which is a ratio of detection noise to the rate at which
signal changes as a function of phase. We have shown that
the rate of the signal change is much higher than in the case
of coherent state input. Thus, if the parity measurement on
the squeezed vacuum is no noisier than on the coherent
state, sensitivity improvement is expected.

The sensitivity of the phase estimation in our scheme
can be estimated based on Eq. (5) combined with Eq. (3):

�’ ¼ 1þ �nð �nþ 2Þsin2’
j cos’j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�nð �nþ 2Þp ; (6)

which is presented in Fig. 3 for the case of ’ ¼ 0. One can
clearly see that phase sensitivity obtained by the parity

measurement at’ ¼ 0 (the dashed line) saturates the lower
bound defined by the quantum Fisher information (black
dots). The expression in Eq. (6) gives dependence of the
phase sensitivity of our scheme on the actual phase differ-
ence as well:

�’ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nð �nþ 2Þp

�
1þ ð2 �nð �nþ 2Þ þ 1Þ’

2

2

�
; (7)

where expansion near the phase origin was made. This
dependence is, in turn, compared to the one for coherent
state input, which has the following functional dependence
on the phase in the vicinity of the phase origin

�’ � 1ffiffiffi
�n

p
�
1þ ð2 �nþ 1Þ’

2

8

�
: (8)

Dependence of the phase sensitivity in both cases is pre-
sented in the inset of Fig. 3 for �n ¼ 5 and �n ¼ 25 TMSV
and for �n ¼ 25 coherent state inputs. Comparison shows
that our scheme has superior sensitivity in the vicinity of
the phase origin but degrades rapidly as the actual phase
difference deviates from zero. However, there is still a
vicinity around ’ ¼ 0 where the phase sensitivity demon-
strated by our scheme is better than the Heisenberg limit of
�’HL ¼ 1= �n. Hence, our proposed scheme for phase es-
timation is the first to beat the Heisenberg limit, in the
absence of nonlinear interactions [19].
Beating the Heisenberg limit, defined in terms of the

mean value, has demonstrated once again the importance
of photon number fluctuations for phase estimation. In
order to better account for photon number fluctuations,
Hofmann in Ref. [20] suggested a more direct definition
of the ultimate quantum limit of phase sensitivity �’2 �
1=hn̂2i, where hn̂2i indicates averaging over the squared
photon numbers. Thus, in the case of high photon number
fluctuations, �n2 ¼ hn̂2i � hn̂i2 > 0, the Hofmann limit
allows for better sensitivity of the phase measurement
than the Heisenberg limit. Clearly hn̂2i contains direct
information about fluctuations where hn̂i2 does not.
In the case of TMSV, �n2 ¼ �n2 þ 2 �n, and thus the

sensitivity of the phase estimation is better than 1= �n, al-

though marginally, but it is never better than 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �n2 þ 2 �n

p
,

which is the Hofmann limit. It is also never below the
quantum Cramer-Rao lower bound set by the quantum
Fisher information of the state.
In order to demonstrate that the maximal phase sensi-

tivity could be underestimated by the Heisenberg limit if
photon number fluctuations are neglected, consider the fol-
lowing state �̂ðn;�Þ¼ sin2�j0;0ih0;0jþcos2�jn;nihn;nj,
which has �n ¼ 2ncos2�. This state could appear in the
context of a probabilistic twin-Fock state generation,
with parity detection on a single output mode, since such
a detection would not distinguish vacuum contribution
from the twin-Fock contribution when all photons were
routed out in the other port.

SNL

HofL

HL

TMSV

TMSV

Coher

FIG. 3 (color online). Sensitivity of phase estimation obtained
with the parity measurement at ’ ¼ 0 (dashed) against average
total photon number. Dots are sensitivity estimation based on
quantum Fisher information for integer values of �n. Shaded area
is between dotted lines 1= �n and 1=

ffiffiffi
�n

p
. The solid line is for the

Hofmann limit discussed in the text. Inset: Sensitivity against
actual values of accumulated phase difference. Solid lines for
TMSV with �n ¼ 5 and �n ¼ 25; dashed line for coherent light
with �n ¼ 25.
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Based on the quantum Fisher information, this state is
capable of providing sensitivity �’2 ¼ 1=½2nðnþ
1Þcos2��, which is obtainable by the parity measurement.
This dependence of the phase sensitivity is presented in
Fig. 4 for n ¼ 2 and n ¼ 5, where the presence of the
vacuum, � > 0, degrades the sensitivity but allows for 1= �n
Heisenberg limit to be beat. However, the Hofmann limit
�’2 ¼ 1=ð4n2cos2�Þ tracks the phase sensitivity well;
without being beaten.

There does exist another limit based on the highest
number of photons in the state—1=N, with N ¼ 2n for
the state considered here. However, it is not as useful as the
Hofmann limit for a number of reasons: (a) it overestimates
the sensitivity as it does for �̂ðn; �Þ; (b) information about
N is not readily available in experiments; (c) for states,
such as coherent and squeezed vacuum, N ¼ 1.

Finally, implementation of parity detection needs to be
discussed. In the proof of principle experiments, a highly
efficient photon number-resolving detector could be used.
Such detectors with 95% efficiency and number-resolving
capabilities in the tens of photons have been demonstrated
[21–24]. However, for more practical applications, knowl-
edge about exact photon numbers is excessive. We con-
jecture that a scheme, which does not require photon
counting, exists, perhaps through the exploitation of opti-
cal nonlinearities [25], or projective measurements, and
this is an area of ongoing research.

In conclusion, the main result of this Letter is our
demonstration that optical interferometry with two-mode
squeezed vacuum and parity detection provides an inter-
ferometric metrology strategy with sensitivity

�’< �n�1—saturating the quantum Cramer-Rao
bound—and resolution �n�1 times better than the resolution
of standard (classical) interference.
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FIG. 4. Phase estimation sensitivity �’ for the state �̂ðn; �Þ
with n ¼ 2 (top four) and n ¼ 5 (bottom four) against �. Solid
lines represent sensitivity with the parity measurement which
saturates the limit set by the quantum Fisher information (dots
for a few selected values of �). Dashed lines represent HL
sensitivity estimation based on the averaged total photon num-
ber: 1= �n. Dot-dashed lines give Hofmann’s estimation of sensi-
tivity discussed in the text.
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